Application of Regression Trees in Optimization of Metal Forming Process

2014 ◽  
Vol 622-623 ◽  
pp. 749-755 ◽  
Author(s):  
Krzysztof Regulski ◽  
Danuta Szeliga ◽  
Jan Kusiak

Application of sensitivity analysis in optimization of process parameters of production processes for innovative materials, e.g. dual phase steel, requires deterministic model of thermomechanical processes and large datasets that covers whole surface of results. Difficulties in optimization of process parameters correspond with large number of control variables, which should be considered in the technology design. Furthermore, conduction of such analysis takes the great computational cost. Presented work concerns possibility of application of regression trees, especially CART model, in preliminary analysis for sensitivity analysis. Use of data mining algorithms enables acquiring of preliminary, rough results: relationships among parameters of the hot rolling process of dual phase steel strips and rules of optimization of this process, it also does not require any apriori knowledge about thermomechanical processes.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Guoying Ma ◽  
Binbing Huang

There are many process parameters which have great effect on the forming quality of parts during automobile panel stamping forming process. This paper took automotive lower floor board as the research object; the forming process was analyzed by finite element simulation using Dynaform. The influences of four main process parameters including BHF (blank holder force), die corner radius, friction coefficient, and die clearance on the maximum thinning rate and the maximum thickening rate were researched based on orthogonal experiment. The results show that the influences of each value of various factors on the target are not identical. On this basis, the optimization of the four parameters was carried out, and the high quality product was obtained and the maximum thinning rate and maximum thickening rate were effectively controlled. The results also show that the simulation analysis provides the basis for the optimization of the forming process parameters, and it can greatly shorten the die manufacturing cycles, reduce the production costs, and improve the production efficiency.


2016 ◽  
Vol 90 ◽  
pp. 204-217 ◽  
Author(s):  
Xin Xue ◽  
Juan Liao ◽  
Gabriela Vincze ◽  
José Sousa ◽  
Frédéric Barlat ◽  
...  

2011 ◽  
Vol 284-286 ◽  
pp. 1244-1252
Author(s):  
Xing Feng Mao ◽  
Kai Ming Wu ◽  
Lian Deng Yao ◽  
Zi Gang Li

The effects of process parameters on microstructural evolution and grain refinement are determined in a Nb-Ti microalloyed high strength dual phase steel. With the increase of cooling rate, final microstructures change from a mixture of acicular ferrite (AF)+martensite/retained austenite (M/A) to conventional bainite (CB)+M/A. Accordingly, the morphology of M/A constituent changes from an equiaxed island in AF to an elongated interlath in CB. The length and width of bainite packets become smaller with the increase of cooling rate and the decrease of deformation temperature. The length of individual bainitic ferrite plates within the packets become smaller with the increase of cooling rate and the decrease of deformation temperature, whereas the thickness of them varies slightly with them. The optimized relaxing time on grain refinement is 60 s. The reheating temperature, reduction ratio and interrupt temperature has no obvious effect on the formation of dual phase of acicular ferrite or bainite and M/A.


2016 ◽  
Vol 879 ◽  
pp. 90-94 ◽  
Author(s):  
Atsushi Ito ◽  
Akinobu Shibata ◽  
Nobuhiro Tsuji

As third generation advanced high strength steels (AHSS) managing both high strength and good ductility/formability, medium manganese steels containing 3-7 wt% Mn have attracted attentions recently. However, the fundamental microstructure evolution during thermomechanical processing and heat treatments in medium-Mn steels is still unclear. In the present study, changes in microstructure and mechanical properties during various heat treatments and thermomechanical processes of 4Mn-0.1%C steel were studied. It was clarified from dilatometric measurements that ferrite transformation in the 4Mn-0.1C steel was quite slow, so that fully martensitic structures were obtained in many cases after cooling from austenite. On the other hand, hot-deformation of austenite greatly accelerated ferrite transformation, and dual phase microstrcutures composed of ferrite and martensite could be obtained. The dual phase steel showed good combinations of high strength and adequate tensile ductility.


2014 ◽  
Vol 611-612 ◽  
pp. 1390-1395 ◽  
Author(s):  
Krzysztof Regulski ◽  
Danuta Szeliga ◽  
Jan Kusiak

Product properties for innovative materials, e.g. dual phase steels, require precise control of production processes. Difficulties in optimization of process parameters correspond with large number of control variables, which should be considered in the technology design. Sensitivity analysis allows evaluating the importance of all process inputs on the final properties of material. Information on the most important inputs is crucial for further design of the process. Application of sensitivity analysis requires detailed knowledge of the process phenomena as well as the definition of the mathematical model of the thermomechanical process. Furthermore, some sensitivity analysis algorithms are of the high computational cost. Presented work concerns possibility of the application of data exploration approach in evaluation of the importance of process inputs as the alternative for sensitivity analysis. Use of data mining algorithms eliminates necessity of mathematical model development, it also does not require any apriori knowledge about the process. Authors presents the comparison of sensitivity analysis and data exploration approach in evaluating relationships between inputs and outputs of the hot rolling for dual phase steel strips. The presented approach and the perspectives of the practical application could lead to significant decrease of time necessary for the computations of process design. The theoretical considerations are supplemented with the results of both types of analysis.


Sign in / Sign up

Export Citation Format

Share Document