Recent Developments in F.E. Analysis of FRP Reinforced Masonry Vaults: Case Studies in Italy

2014 ◽  
Vol 624 ◽  
pp. 389-396 ◽  
Author(s):  
Gabriele Milani ◽  
Antonio Tralli

Aim of the present paper is the analysis of a series of existing masonry cross vaults exhibiting meaningful structural deterioration and diffused crack patterns, by means of an advanced non-linear and limit analysis software. The approach utilized is a non-standard and non-commercial one and bases both for the non-linear and limit analysis procedure on a FE discretization of the domain by means of rigid infinitely resistant wedges, where all the non-linearity is concentrated on interfaces between adjoining elements [1-3]. When dealing with the non-linear code, a sequential quadratic programming scheme is used at each iteration in order to deal with the deterioration of mechanical properties of interfaces, provided that the actual non-linear behavior is approximated by means of a linear piecewise constant function. Some real case studies of historic buildings in Italy are discussed. The first case study is represented by the structural analysis of a series of existing masonry cross vaults constituting the roof system of the ground floor of the former Caserma Lorenzini (ex Convent of S. Lorenzo) in Lucca, Italy, at the moment subjected to a wide restoration intervention within the so called Piuss project. The second is represented by the cross vaults of a 12th century masonry sighting tower damaged by the 20th may 2012 Emilia earthquake. This medieval tower, called Torre Fornasini, is located in the municipality of Poggio Renatico, about 10 km from Ferrara.

2007 ◽  
Vol 29 (3) ◽  
pp. 431-439 ◽  
Author(s):  
P. Roca ◽  
F. López-Almansa ◽  
J. Miquel ◽  
A. Hanganu

2016 ◽  
Vol 9 (3) ◽  
pp. 735-745 ◽  
Author(s):  
Andrea Chiozzi ◽  
Gabriele Milani ◽  
Nicola Grillanda ◽  
Antonio Tralli

2017 ◽  
Vol 13 ◽  
pp. 224-243 ◽  
Author(s):  
Antonio Maria D'Altri ◽  
Giovanni Castellazzi ◽  
Stefano de Miranda ◽  
Antonio Tralli

2019 ◽  
Vol 817 ◽  
pp. 205-212
Author(s):  
Nicola Grillanda ◽  
Andrea Chiozzi ◽  
Gabriele Milani ◽  
Antonio Tralli

Masonry vaults represent one of the typical structural typologies in historical masonry buildings. The study of the ultimate behavior of masonry vaults, together with the need to design adequate retrofitting techniques, is of high relevance in the optics of the preservation of the cultural heritage. In this paper, a new approach for the limit analysis of masonry construction is applied to FRP reinforced masonry vaults. This approach relies on the representation of geometry through NURBS surfaces, upper bound formulation of limit analysis, idealization of the structure as an assembly of rigid bodies with dissipation allowed only along interfaces, and optimization by means of a mesh adaptation scheme. The presence of FRP strips can be taken into account in easy way, because they can be included simply by adding NURBS surfaces and assigning them an adequate delamination stress value. The efficient mesh adaptation is performed by means of a Prey Predator Algorithm, which has been proven to be very suited for these problems. The strength of the proposed method lies in an accurate estimation of load-bearing capacity and collapse mechanism obtained with a model which requires a very low computational effort.


Author(s):  
Sukho Lee ◽  
John van den Biggelaar ◽  
Marc van Veenhuizen

Abstract Laser-based dynamic analysis has become a very important tool for analyzing advanced process technology and complex circuit design. Thus, many good reference papers discuss high resolution, high sensitivity, and useful applications. However, proper interpretation of the measurement is important as well to understand the failure behavior and find the root cause. This paper demonstrates this importance by describing two insightful case studies with unique observations from laser voltage imaging/laser voltage probing (LVP), optical beam induced resistance change, and soft defect localization (SDL) analysis, which required an in-depth interpretation of the failure analysis (FA) results. The first case is a sawtooth LVP signal induced by a metal short. The second case, a mismatched result between an LVP and SDL analysis, is a good case of unusual LVP data induced by a very sensitive response to laser light. The two cases provide a good reference on how to properly explain FA results.


Author(s):  
Mai Zhihong ◽  
Ng Tsu Hau ◽  
Dawood M. Khalid ◽  
Tan Pik Kee ◽  
Jeffrey Lam

Abstract IP protection is of major importance for a semiconductor company and only limited information is made available for device debugging for the product outsourced to a foundry. In order to position ourselves better in the ever competitive semiconductor industry, with the consideration of IP protection, we have to provide the customers with the Si debugging capability and device/chip verification services in foundry. This paper explores the Si debugging methodology and technique in a foundry. Two case studies are presented and discussed. The first case illustrates the isolation of the failure location by InGaAs microscopy, upon which the failure was identified to be caused by a latch-up issue. In the second case, due to confidentiality considerations from the customer, full information could not be provided to the foundry for silicon debugging. The paper illustrates the ability to effectively debug a failure despite being constrained by limited information from the customer.


Sign in / Sign up

Export Citation Format

Share Document