Interpreting Laser-Based Fault Localization Results: Case Studies

Author(s):  
Sukho Lee ◽  
John van den Biggelaar ◽  
Marc van Veenhuizen

Abstract Laser-based dynamic analysis has become a very important tool for analyzing advanced process technology and complex circuit design. Thus, many good reference papers discuss high resolution, high sensitivity, and useful applications. However, proper interpretation of the measurement is important as well to understand the failure behavior and find the root cause. This paper demonstrates this importance by describing two insightful case studies with unique observations from laser voltage imaging/laser voltage probing (LVP), optical beam induced resistance change, and soft defect localization (SDL) analysis, which required an in-depth interpretation of the failure analysis (FA) results. The first case is a sawtooth LVP signal induced by a metal short. The second case, a mismatched result between an LVP and SDL analysis, is a good case of unusual LVP data induced by a very sensitive response to laser light. The two cases provide a good reference on how to properly explain FA results.

Author(s):  
Sukho Lee ◽  
Keonil Kim ◽  
Yunwoo Lee ◽  
Euncheol Lee ◽  
Yojoung Kim ◽  
...  

Abstract During the early stage of process development, the major activities are yield ramp up with DFT test such as Memory BIST and SCAN test. There are plenty of commercial and inhouse diagnostics tools for DFT so in case of failure FA procedures are rather simple and standardized: run EDA tool, get fail location, perform pFA then feedback to process engineering. However in the case of marginal failure FA procedures are generally more complicated. FA engineer should consider many different scenarios to find the root cause. The marginal voltage fail is caused by many different reasons. The analysis of marginal fail is of course very important to screen out healthy devices and detect any problem of process technology or design methodology. In this paper, the authors deal with three marginal voltage fail case studies: scan chain fail, digital function fail and analog function fail. Throughout these case studies, LADA was successfully used to define the fault location. The reason of device alteration was well explained with further study. It is obvious that LADA is a very effective way to analyze marginal failures in cases where the FA engineer doesn’t have much design information because the results are very intuitive and clear. There is little doubt of LADA results accuracy because LADA is utilizing the tester to make an accurate Pass/Fail decision. LADA results are direct indication of device sensitivity to parametric changes, in our case voltage margin.


Author(s):  
Fred Y. Chang ◽  
Victer Chan

Abstract This paper describes a novel de-process flow by combining cobalt silicide / nitride wet etch with KOH electrochemical wet etch (ECW) to identify leaky gate in silicided deep sub-micron process technology. Traditionally, leaky gate identification requires direct confirmation by gate level electrical or emission detection technique. Ohtani [1] used KOH electrochemical etch application to identify nonsilicided leaky gate capacitor in DRAM without using the above confirmation. The result of the case study demonstrates the expanded application of ECW etch to both silicided 0.18um logic and SRAM devices. Voltage contrast at metal 1 to assist leaky gate localization is also proposed. By combining both techniques, the possibility for isolating gate related defects are greatly enhanced. Case studies also show the advantages of the proposed technique over conventional poly level voltage contrast in leaky gate identification especially with devices that use local interconnect and nitride liner process.


Author(s):  
Frank S. Arnold

Abstract To be better prepared to use laser based failure isolation techniques on field failures of complex integrated circuits, simple test structures without any failures can be used to study Optical Beam Induced Resistance Change (OBIRCH) results. In this article, four case studies are presented on the following test structures: metal strap, contact string, VIA string, and comb test structure. Several experiments were done to investigate why an OBIRCH image was seen in certain areas of a VIA string and not in others. One experiment showed the OBRICH variation was not related to the cooling and heating effects of the topology, or laser beam focusing. A 4 point probe resistance measurement and cross-sectional views correlated with the OBIRCH results and proved OBIRCH was able to detect a variation in VIA fabrication.


Author(s):  
Victor K. F. Chia ◽  
Hugh E. Gotts ◽  
Fuhe Li ◽  
Mark Camenzind

Abstract Semiconductor devices are sensitive to contamination that can cause product defects and product rejects. There are many possible types and sources of contamination. Root cause resolution of the contamination source can improve yield. The purpose of contamination troubleshooting is to identify and eliminate major yield limiters. This requires the use of a variety of analytical techniques[1]. Most important, it requires an understanding of the principle of contamination troubleshooting and general knowledge of analytical tests. This paper describes a contamination troubleshooting approach with case studies as examples of its application.


Author(s):  
Erik Paul ◽  
Holger Herzog ◽  
Sören Jansen ◽  
Christian Hobert ◽  
Eckhard Langer

Abstract This paper presents an effective device-level failure analysis (FA) method which uses a high-resolution low-kV Scanning Electron Microscope (SEM) in combination with an integrated state-of-the-art nanomanipulator to locate and characterize single defects in failing CMOS devices. The presented case studies utilize several FA-techniques in combination with SEM-based nanoprobing for nanometer node technologies and demonstrate how these methods are used to investigate the root cause of IC device failures. The methodology represents a highly-efficient physical failure analysis flow for 28nm and larger technology nodes.


Author(s):  
Hui Peng Ng ◽  
Ghim Boon Ang ◽  
Chang Qing Chen ◽  
Alfred Quah ◽  
Angela Teo ◽  
...  

Abstract With the evolution of advanced process technology, failure analysis is becoming much more challenging and difficult particularly with an increase in more erratic defect types arising from non-visual failure mechanisms. Conventional FA techniques work well in failure analysis on defectively related issue. However, for soft defect localization such as S/D leakage or short due to design related, it may not be simple to identify it. AFP and its applications have been successfully engaged to overcome such shortcoming, In this paper, two case studies on systematic issues due to soft failures were discussed to illustrate the AFP critical role in current failure analysis field on these areas. In other words, these two case studies will demonstrate how Atomic Force Probing combined with Scanning Capacitance Microscopy were used to characterize failing transistors in non-volatile memory, identify possible failure mechanisms and enable device/ process engineers to make adjustment on process based on the electrical characterization result. [1]


Author(s):  
Mai Zhihong ◽  
Ng Tsu Hau ◽  
Dawood M. Khalid ◽  
Tan Pik Kee ◽  
Jeffrey Lam

Abstract IP protection is of major importance for a semiconductor company and only limited information is made available for device debugging for the product outsourced to a foundry. In order to position ourselves better in the ever competitive semiconductor industry, with the consideration of IP protection, we have to provide the customers with the Si debugging capability and device/chip verification services in foundry. This paper explores the Si debugging methodology and technique in a foundry. Two case studies are presented and discussed. The first case illustrates the isolation of the failure location by InGaAs microscopy, upon which the failure was identified to be caused by a latch-up issue. In the second case, due to confidentiality considerations from the customer, full information could not be provided to the foundry for silicon debugging. The paper illustrates the ability to effectively debug a failure despite being constrained by limited information from the customer.


Author(s):  
Ashish Singla ◽  
Jyotindra Narayan ◽  
Himanshu Arora

In this paper, an attempt has been made to investigate the potential of redundant manipulators, while tracking trajectories in narrow channels. The behavior of redundant manipulators is important in many challenging applications like under-water welding in narrow tanks, checking the blockage in sewerage pipes, performing a laparoscopy operation etc. To demonstrate this snake-like behavior, redundancy resolution scheme is utilized using two different approaches. The first approach is based on the concept of task priority, where a given task is split and prioritize into several subtasks like singularity avoidance, obstacle avoidance, torque minimization, and position preference over orientation etc. The second approach is based on Adaptive Neuro Fuzzy Inference System (ANFIS), where the training is provided through given datasets and the results are back-propagated using augmentation of neural networks with fuzzy logics. Three case studies are considered in this work to demonstrate the redundancy resolution of serial manipulators. The first case study of 3-link manipulator is attempted with both the approaches, where the objective is to track the desired trajectory while avoiding multiple obstacles. The second case study of 7-link manipulator, tracking trajectory in a narrow channel, is investigated using the concept of task priority. The realistic application of minimum-invasive surgery (MIS) based trajectory tracking is considered as the third case study, which is attempted using ANFIS approach. The 5-link spatial redundant manipulator, also known as a patient-side manipulator being developed at CSIR-CSIO, Chandigarh is used to track the desired surgical cuts. Through the three case studies, it is well demonstrated that both the approaches are giving satisfactory results.


Author(s):  
Andrew Lees ◽  
Michael Dobie

Polymer geogrid reinforced soil retaining walls have become commonplace, with routine design generally carried out by limiting equilibrium methods. Finite element analysis (FEA) is becoming more widely used to assess the likely deformation behavior of these structures, although in many cases such analyses over-predict deformation compared with monitored structures. Back-analysis of unit tests and instrumented walls improves the techniques and models used in FEA to represent the soil fill, reinforcement and composite behavior caused by the stabilization effect of the geogrid apertures on the soil particles. This composite behavior is most representatively modeled as enhanced soil shear strength. The back-analysis of two test cases provides valuable insight into the benefits of this approach. In the first case, a unit cell was set up such that one side could yield thereby reaching the active earth pressure state. Using FEA a test without geogrid was modeled to help establish appropriate soil parameters. These parameters were then used to back-analyze a test with geogrid present. Simply using the tensile properties of the geogrid over-predicted the yield pressure but using an enhanced soil shear strength gave a satisfactory comparison with the measured result. In the second case a trial retaining wall was back-analyzed to investigate both deformation and failure, the failure induced by cutting the geogrid after construction using heated wires. The closest fit to the actual deformation and failure behavior was provided by using enhanced fill shear strength.


Medicina ◽  
2021 ◽  
Vol 57 (3) ◽  
pp. 240
Author(s):  
Sarah Humboldt-Dachroeden ◽  
Alberto Mantovani

Background: One Health is a comprehensive and multisectoral approach to assess and examine the health of animals, humans and the environment. However, while the One Health approach gains increasing momentum, its practical application meets hindrances. This paper investigates the environmental pillar of the One Health approach, using two case studies to highlight the integration of environmental considerations. The first case study pertains to the Danish monitoring and surveillance programme for antimicrobial resistance, DANMAP. The second case illustrates the occurrence of aflatoxin M1 (AFM1) in milk in dairy-producing ruminants in Italian regions. Method: A scientific literature search was conducted in PubMed and Web of Science to locate articles informing the two cases. Grey literature was gathered to describe the cases as well as their contexts. Results: 19 articles and 10 reports were reviewed and informed the two cases. The cases show how the environmental component influences the apparent impacts for human and animal health. The DANMAP highlights the two approaches One Health and farm to fork. The literature provides information on the comprehensiveness of the DANMAP, but highlights some shortcomings in terms of environmental considerations. The AFM1 case, the milk metabolite of the carcinogenic mycotoxin aflatoxin B1, shows that dairy products are heavily impacted by changes of the climate as well as by economic drivers. Conclusions: The two cases show that environmental conditions directly influence the onset and diffusion of hazardous factors. Climate change, treatment of soils, water and standards in slaughterhouses as well as farms can have a great impact on the health of animals, humans and the environment. Hence, it is important to include environmental considerations, for example, via engaging environmental experts and sharing data. Further case studies will help to better define the roles of environment in One Health scenarios.


Sign in / Sign up

Export Citation Format

Share Document