A Silicon Debugging Methodology on Customer Prototype for Wafer Foundries

Author(s):  
Mai Zhihong ◽  
Ng Tsu Hau ◽  
Dawood M. Khalid ◽  
Tan Pik Kee ◽  
Jeffrey Lam

Abstract IP protection is of major importance for a semiconductor company and only limited information is made available for device debugging for the product outsourced to a foundry. In order to position ourselves better in the ever competitive semiconductor industry, with the consideration of IP protection, we have to provide the customers with the Si debugging capability and device/chip verification services in foundry. This paper explores the Si debugging methodology and technique in a foundry. Two case studies are presented and discussed. The first case illustrates the isolation of the failure location by InGaAs microscopy, upon which the failure was identified to be caused by a latch-up issue. In the second case, due to confidentiality considerations from the customer, full information could not be provided to the foundry for silicon debugging. The paper illustrates the ability to effectively debug a failure despite being constrained by limited information from the customer.

Author(s):  
Sukho Lee ◽  
John van den Biggelaar ◽  
Marc van Veenhuizen

Abstract Laser-based dynamic analysis has become a very important tool for analyzing advanced process technology and complex circuit design. Thus, many good reference papers discuss high resolution, high sensitivity, and useful applications. However, proper interpretation of the measurement is important as well to understand the failure behavior and find the root cause. This paper demonstrates this importance by describing two insightful case studies with unique observations from laser voltage imaging/laser voltage probing (LVP), optical beam induced resistance change, and soft defect localization (SDL) analysis, which required an in-depth interpretation of the failure analysis (FA) results. The first case is a sawtooth LVP signal induced by a metal short. The second case, a mismatched result between an LVP and SDL analysis, is a good case of unusual LVP data induced by a very sensitive response to laser light. The two cases provide a good reference on how to properly explain FA results.


Author(s):  
Ashish Singla ◽  
Jyotindra Narayan ◽  
Himanshu Arora

In this paper, an attempt has been made to investigate the potential of redundant manipulators, while tracking trajectories in narrow channels. The behavior of redundant manipulators is important in many challenging applications like under-water welding in narrow tanks, checking the blockage in sewerage pipes, performing a laparoscopy operation etc. To demonstrate this snake-like behavior, redundancy resolution scheme is utilized using two different approaches. The first approach is based on the concept of task priority, where a given task is split and prioritize into several subtasks like singularity avoidance, obstacle avoidance, torque minimization, and position preference over orientation etc. The second approach is based on Adaptive Neuro Fuzzy Inference System (ANFIS), where the training is provided through given datasets and the results are back-propagated using augmentation of neural networks with fuzzy logics. Three case studies are considered in this work to demonstrate the redundancy resolution of serial manipulators. The first case study of 3-link manipulator is attempted with both the approaches, where the objective is to track the desired trajectory while avoiding multiple obstacles. The second case study of 7-link manipulator, tracking trajectory in a narrow channel, is investigated using the concept of task priority. The realistic application of minimum-invasive surgery (MIS) based trajectory tracking is considered as the third case study, which is attempted using ANFIS approach. The 5-link spatial redundant manipulator, also known as a patient-side manipulator being developed at CSIR-CSIO, Chandigarh is used to track the desired surgical cuts. Through the three case studies, it is well demonstrated that both the approaches are giving satisfactory results.


Medicina ◽  
2021 ◽  
Vol 57 (3) ◽  
pp. 240
Author(s):  
Sarah Humboldt-Dachroeden ◽  
Alberto Mantovani

Background: One Health is a comprehensive and multisectoral approach to assess and examine the health of animals, humans and the environment. However, while the One Health approach gains increasing momentum, its practical application meets hindrances. This paper investigates the environmental pillar of the One Health approach, using two case studies to highlight the integration of environmental considerations. The first case study pertains to the Danish monitoring and surveillance programme for antimicrobial resistance, DANMAP. The second case illustrates the occurrence of aflatoxin M1 (AFM1) in milk in dairy-producing ruminants in Italian regions. Method: A scientific literature search was conducted in PubMed and Web of Science to locate articles informing the two cases. Grey literature was gathered to describe the cases as well as their contexts. Results: 19 articles and 10 reports were reviewed and informed the two cases. The cases show how the environmental component influences the apparent impacts for human and animal health. The DANMAP highlights the two approaches One Health and farm to fork. The literature provides information on the comprehensiveness of the DANMAP, but highlights some shortcomings in terms of environmental considerations. The AFM1 case, the milk metabolite of the carcinogenic mycotoxin aflatoxin B1, shows that dairy products are heavily impacted by changes of the climate as well as by economic drivers. Conclusions: The two cases show that environmental conditions directly influence the onset and diffusion of hazardous factors. Climate change, treatment of soils, water and standards in slaughterhouses as well as farms can have a great impact on the health of animals, humans and the environment. Hence, it is important to include environmental considerations, for example, via engaging environmental experts and sharing data. Further case studies will help to better define the roles of environment in One Health scenarios.


2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
Armin Sorooshian ◽  
Hanh T. Duong

Two case studies are discussed that evaluate the effect of ocean emissions on aerosol-cloud interactions. A review of the first case study from the eastern Pacific Ocean shows that simultaneous aircraft and space-borne observations are valuable in detecting links between ocean biota emissions and marine aerosols, but that the effect of the former on cloud microphysics is less clear owing to interference from background anthropogenic pollution and the difficulty with field experiments in obtaining a wide range of aerosol conditions to robustly quantify ocean effects on aerosol-cloud interactions. To address these limitations, a second case was investigated using remote sensing data over the less polluted Southern Ocean region. The results indicate that cloud drop size is reduced more for a fixed increase in aerosol particles during periods of higher ocean chlorophyll A. Potential biases in the results owing to statistical issues in the data analysis are discussed.


2013 ◽  
Vol 67 (11) ◽  
pp. 2576-2581 ◽  
Author(s):  
A. K. Sharma ◽  
S. Cook ◽  
M. N. Chong

Decentralised water and wastewater systems are being implemented to meet growing demand for municipal services either in combination with centralised systems or as standalone systems. In Australia, there has been increased investment in decentralised water and wastewater systems in response to the capacity constraints of existing centralised systems, an extended period of below average rainfall, uncertainly in traditional water sources due to potential climate change impacts, and the need to reduce the environmental impact of urban development. The implementation of decentralised water systems as a mainstream practice at different development scales is impeded by the knowledge gaps on their actual performance in a range of development types and settings. As the wide-spread uptake of these approaches in modern cities is relatively new compared to centralised approaches, there is limited information available on their planning, design, implementation, reliability and robustness. This paper presents a number of case studies where monitoring studies are under way to validate the performance of decentralised water and wastewater systems. The results from these case studies show the yield and reliability of these decentralised systems, as well as the associated energy demand and ecological footprint. The outputs from these case studies, and other monitoring studies, are important in improving decentralised system design guidelines and developing industry wide management norms for the operation and maintenance of decentralised systems.


Author(s):  
Alex Ryan ◽  
Mark Leung

This paper introduces two novel applications of systemic design to facilitate a comparison of alternative methodologies that integrate systems thinking and design. In the first case study, systemic design helped the Procurement Department at the University of Toronto re-envision how public policy is implemented and how value is created in the broader university purchasing ecosystem. This resulted in an estimated $1.5 million in savings in the first year, and a rise in user retention rates from 40% to 99%. In the second case study, systemic design helped the clean energy and natural resources group within the Government of Alberta to design a more efficient and effective resource management system and shift the way that natural resource departments work together. This resulted in the formation of a standing systemic design team and contributed to the creation of an integrated resource management system. A comparative analysis of the two projects identifies a shared set of core principles for systemic design as well as areas of differentiation that reveal potential for learning across methodologies. Together, these case studies demonstrate the complementarity of systems thinking and design thinking, and show how they may be integrated to guide positive change within complex sociotechnical systems.


Risks ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 204
Author(s):  
Chamay Kruger ◽  
Willem Daniel Schutte ◽  
Tanja Verster

This paper proposes a methodology that utilises model performance as a metric to assess the representativeness of external or pooled data when it is used by banks in regulatory model development and calibration. There is currently no formal methodology to assess representativeness. The paper provides a review of existing regulatory literature on the requirements of assessing representativeness and emphasises that both qualitative and quantitative aspects need to be considered. We present a novel methodology and apply it to two case studies. We compared our methodology with the Multivariate Prediction Accuracy Index. The first case study investigates whether a pooled data source from Global Credit Data (GCD) is representative when considering the enrichment of internal data with pooled data in the development of a regulatory loss given default (LGD) model. The second case study differs from the first by illustrating which other countries in the pooled data set could be representative when enriching internal data during the development of a LGD model. Using these case studies as examples, our proposed methodology provides users with a generalised framework to identify subsets of the external data that are representative of their Country’s or bank’s data, making the results general and universally applicable.


1997 ◽  
Vol 15 (1) ◽  
pp. 40-53 ◽  
Author(s):  
E. G. Bradshaw ◽  
M. Lester

Abstract. The characteristics of substorm-associated Pi2 pulsations observed by the SABRE coherent radar system during three separate case studies are presented. The SABRE field of view is well positioned to observe the differences between the auroral zone pulsation signature and that observed at mid-latitudes. During the first case study the SABRE field of view is initially in the eastward electrojet, equatorward and to the west of the substorm-enhanced electrojet current. As the interval progresses, the western, upward field-aligned current of the substorm current wedge moves westward across the longitudes of the radar field of view. The westward motion of the wedge is apparent in the spatial and temporal signatures of the associated Pi2 pulsation spectra and polarisation sense. During the second case study, the complex field-aligned and ionospheric currents associated with the pulsation generation region move equatorward into the SABRE field of view and then poleward out of it again after the third pulsation in the series. The spectral content of the four pulsations during the interval indicate different auroral zone and mid-latitude signatures. The final case study is from a period of low magnetic activity when SABRE observes a Pi2 pulsation signature from regions equatorward of the enhanced substorm currents. There is an apparent mode change between the signature observed by SABRE in the ionosphere and that on the ground by magnetometers at latitudes slightly equatorward of the radar field of view. The observations are discussed in terms of published theories of the generation mechanisms for this type of pulsation. Different signatures are observed by SABRE depending on the level of magnetic activity and the position of the SABRE field of view relative to the pulsation generation region. A twin source model for Pi2 pulsation generation provides the clearest explanation of the signatures observed.


Author(s):  
Roi Wagner

This chapter examines two case studies that illustrate the limitations of the cognitive theory of mathematical metaphor in accounting for the formation of actual historical mathematical life worlds. The first case study deals with four medieval and early modern examples of relating algebra to geometry. These examples show that when two mathematical domains are linked, what passes between them cannot be reduced to “inferences,” as assumed by the theory of mathematical metaphor. The second case study reviews notions of infinity since early modernity and demonstrates that these notions are far too variegated and complex to be subsumed under a single metaphor—namely, George Lakoff and Rafael Núñez's basic metaphor of infinity, which tries to read all mathematical infinities as metaphorically projecting final destinations on indefinite sequences.


Author(s):  
Roi Wagner

This chapter presents two case studies that highlight the problems of mathematical semiosis: how mathematical signs obtain and change their senses. The first case study follows the paradigmatic mathematical sign, x, as it is used in applications of powers series to combinatorics via generating functions. The second case study concerns gender role stereotypes involving the so-called “stable marriage problem.” Both case studies open up questions of how meaning is transferred within and across mathematical contexts and try to substantiate the book's claims about interpretation, formalization, and constraints over mathematical objects and statements. The chapter also considers gender-neutral mathematical language in the context of sexuality.


Sign in / Sign up

Export Citation Format

Share Document