Mechanical and Tribological Properties of W(100-x)%Cx% Coatings Deposited by DC Magnetron Sputtering

2015 ◽  
Vol 642 ◽  
pp. 184-189
Author(s):  
Yan Liang Su ◽  
Yueh Feng Lin

W(100-x)%Cx% coatings with different tungsten and carbon contents were deposited by unbalanced magnetron sputtering. The microstructures and mechanical properties of the W(100-x)%C x% coatings was characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), nanoindentation and adhesion testing techniques. The tribological performance of the coatings was investigated using a pin-on-disc trobometer under dry conditions. Experimental results indicated that coating microstructure, mechanical properties and wear resistance varied according to the tungsten and carbon contents of the coatings. The W72%C28% coating had the highest hardness/elastic modulus (H/E) ratio. In the ball-on-disc wear tests, it was found that the W72%C28% coating exhibited the best wear resistance.

2007 ◽  
Vol 353-358 ◽  
pp. 1700-1703
Author(s):  
Qi Zhang ◽  
Feng Qi ◽  
Yong Xiang Leng ◽  
Nan Huang ◽  
Zhen Bing Cai

Ti/TiN multilayer films were synthesized on 17-4PH stainless steel using unbalanced magnetron sputtering. The modulation periods is ranged from 100nm to 350 nm. The microstructure of the multilayer films was analyzed by X-ray diffraction. The cross-section views of the multilayer films were studied by scanning electron microscope (SEM). The microhardness and wear resistance of the films were measured by a HXD-1000 microhardness tester and ball-on-disk wear tester. The corrosion resistance of the multilayer films was evaluated by potentiodynamic polarization scans in a 3% NaCl solution. The results showed that there was TiNx intergradation layer in the films. The microhardness and the wear resistance of the multilayer films increased with the layer number. The Ti/TiN multilayer can improve the corrosive resistance of the 17-4PH stainless steel.


2021 ◽  
Vol 16 (1) ◽  
pp. 43-48
Author(s):  
Michal Krbaťa ◽  
◽  
Jana Escherová ◽  

The paper deals with the change in mechanical properties and wear of 1.2842 universal tool steel after plasma nitriding, which is widely used to produce cutting tools with good durability and low operating costs. Plasma nitriding was performed at a temperature of 500 °C for 10-hour period in a standard N2 /H2 atmosphere with 1:3 gases ratio. Microstructure, phase structure, thickness of a nitriding layer and surface roughness of samples were measured with optical microscopes and a profilometer. Verification of a chemical composition was carried out on the BAS TASMAN Q4 device. Wear resistance was measured on a universal TRIBOLAB UTM 3 tribometer, through a, “pin on disc“ method. The results of experiments have shown that plasma nitriding process, significantly improves the mechanical and tribological properties of selected materials.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Yu-Wei Lin ◽  
Chia-Wei Lu ◽  
Ge-Ping Yu ◽  
Jia-Hong Huang

This study aims to investigate the effects of nitrogen flow rate (0–2.5 sccm) on the structure and properties of TiZrN films. Nanocrystalline TiZrN thin films were deposited on Si (001) substrates by unbalanced magnetron sputtering. The major effects of the nitrogen flow rate were on the phase, texture, N/(Ti + Zr) ratio, thickness, hardness, residual stress, and resistivity of the TiZrN films. The nitrogen content played an important role in the phase transition. With increasing nitrogen flow rate, the phase changed from mixed TiZr and TiZrN phases to a single TiZrN phase. The X-ray diffraction results indicated that (111) was the preferred orientation for all TiZrN specimens. The N/(Ti + Zr) ratio of the TiZrN films first increased with increasing nitrogen flow rate and then stabilized when the flow rate further increased. When the nitrogen flow rate increased from 0.4 to 1.0 sccm, the hardness and residual stress of the TiZrN thin film increased, whereas the electrical resistivity decreased. None of the properties of the TiZrN thin films changed with nitrogen flow rate above 1.0 sccm because the films contained a stable single phase (TiZrN). At high nitrogen flow rates (1.0–2.5 sccm), the average hardness and resistivity of the TiZrN thin films were approximately 36 GPa and 36.5 μΩ·cm, respectively.


2007 ◽  
Vol 4 (S1) ◽  
pp. S687-S692 ◽  
Author(s):  
Martynas Audronis ◽  
Adrian Leyland ◽  
Allan Matthews ◽  
Fillip V. Kiryukhantsev-Korneev ◽  
Dmitry V. Shtansky ◽  
...  

Author(s):  
Manohar S. Konchady ◽  
Sergey Yarmolenko ◽  
Devdas M. Pai ◽  
Jag Sankar

Multilayer and superlattice coatings of TiN/CrN coating are deposited on Si(100) substrate at different modulation wavelength by reactive unbalanced magnetron sputtering and characterized using X-ray diffraction, nanoindentation, AFM. Nano-roughness of films is in good correlation with hardness and modulus and this effect has been used for optimization of deposition parameters. Preliminary results have shown slightly better mechanical properties for multilayered TiN/CrN coatings compared to single layer TiN and CrN coatings. The XRD results have shown a preferred orientation in <100> direction for TiN/CrN multilayer coatings at modulation wavelengths below 80 nm. At 100 nm layer thickness, TiN revealed small amount of crystals with <111> orientation and their content significantly increases with increase in layer thickness while CrN layers only show preferred orientation of <100>. Multilayered coatings exhibit better mechanical properties due to presence of large number of interfaces which act as barrier to dislocations. Fracture toughness and tribological properties of these coatings are also expected to show significant improvement and the investigation in this area is under progress.


Sign in / Sign up

Export Citation Format

Share Document