Surface Roughness Effects on Fluid Flow between Two Rotating Cylinders

2015 ◽  
Vol 642 ◽  
pp. 275-280
Author(s):  
Sutthinan Srirattayawong ◽  
Shian Gao

In general, the thin fluid film problems are explained by the classical Reynolds equation, but this approach has some limitations. To overcome them, the method of Computational Fluid Dynamics (CFD) is used in this study, as an alternative to solving the Reynolds equation. The characteristics of the two cylinders contact with real surface roughness are investigated. The CFD model has been used to simulate the behavior of the fluid flows at the conjunction between two different radius cylinders. The non-Newtonian fluid is employed to calculate the lubricant viscosity, and the thermal effect is also considered in the evaluation of the lubricant properties. The pressure distributions, the fluid film thickness and the temperature distributions are investigated. The obtained results show clearly the significance of the surface roughness on the lubricant flow at the contact center area. The fluctuated flow also affects the pressure distribution, the temperature and the lubricant viscosity in a similar pattern to the rough surface profile. The surface roughness effect will decrease when the film thickness is increased.

Author(s):  
Dong Guan ◽  
Li Jing ◽  
Harry H Hilton ◽  
Junjie Gong

Dynamic lubrication analyses for a spherical pump, consisting of a piston and cylinder, are presented. Contact forces between piston and cylinder are modeled first using an equivalent ball-on-plane model. Both the effects of external loads and operating conditions are considered in a dynamic elastohydrodynamic lubrication model, which is derived from Reynolds equation. Two assumed time-dependent sine-wave and square-wave loads are applied to the model. Fluid film thicknesses are estimated using the model and assumed loads, effects of different structural, and operational parameters, such as piston diameter, radial clearance, applied load, piston speed, lubricant viscosity, and surface roughness, on fluid film thickness are investigated. Fluid film thickness reactions of more realistic smooth and continuous sine wave loads are compared to discontinuous ones in order to verify whether or not assumed ideal loads are acceptable and reliable. Results indicate that piston diameter, speed, lubricant viscosity have positive relations on the dynamic lubrication performance, and increasing these values can improve the dynamic lubrication regime. While the parameters such as radial clearance, applied load, and surface roughness have the verse effects. Furthermore, the impacts of all the above parameters on fluid film are different either. These obtained results can be used to effectively optimize spherical pump lubrication performance.


2001 ◽  
Vol 124 (1) ◽  
pp. 203-211 ◽  
Author(s):  
J. K. Martin ◽  
D. W. Parkins

Principles of a continuously adjustable hydrodynamic bearing are described together with an analysis model for studying its theoretical performance. The model included an expanded form of the governing Reynolds equation which took account of non-uniform variations in the fluid film thickness. A solution procedure was devised whereby for a given set of adjustment conditions, simultaneously converged fields of fluid film thickness, temperature, viscosity and pressure would result, together with oil film forces. A wide range of operating characteristics were studied with results predicting advantages and benefits over conventional hydrodynamic bearings.


1989 ◽  
Vol 111 (3) ◽  
pp. 495-503 ◽  
Author(s):  
Y. Mitsuya ◽  
T. Ohkubo ◽  
H. Ota

The average film thickness theory is extended to gas lubrication possessing surface roughness in the slip flow regime. A simplified averaged Reynolds equation is derived and its applicability is confirmed through comparing with experiments. This averaging equation makes use of the mixed average film thickness defined as Havem = αHm + (1 − α)Hmˆ, where m = 1, 2 and 3; α indicates the mixing ratio; and H¯ and Hˆ denote the arithmetically and harmonically averaged film thicknesses. The experiments were performed using computer flying heads having precisely photolithography-fabricated longitudinal, transverse or checkered pattern roughnesses under submicron spacing conditions. From the excellent agreement obtained between the calculated and experimental results, it can be concluded that the assumption that velocity slippage occurs along the surface even if roughnes is present is justified, and that the approximate method is applicable for determining the surface roughness effects in the slip flow regime.


1991 ◽  
Vol 113 (2) ◽  
pp. 295-302 ◽  
Author(s):  
Young-ze Lee ◽  
K. C. Ludema

The mechanisms of failure of lubricated steel surfaces were investigated. The focus was on two phenomena, namely, the effects of lubricant reactivity and the effects of sliding speed. Experiments were performed with the ball-on-flat and the cylinder-on-flat geometries in the manner of the methods used to develop the failure maps of the (OECD) IRG. Contact resistance and coefficient of friction were measured during the tests and surface roughness was measured frequently during the tests. Surface failure could not be predicted by using the ratio λ (the ratio of fluid film thickness to composite surface roughness) except when chemically inert lubricants are used. Even then the adverse influence of temperature rise on fluid film thickness does not adequately explain the low load carrying capacity of lubricated surfaces at high sliding speeds. There is a separate effect, namely, a quicker and more severe surface roughening at high speeds than at low speeds, which causes surface failure. The protective layers on sliding surfaces that form by chemical reaction with the lubricant were found to reduce the surface roughening and increase the load carrying capacity of surfaces to values of λ as low as 0.03.


MRS Bulletin ◽  
1991 ◽  
Vol 16 (10) ◽  
pp. 54-58 ◽  
Author(s):  
Stephen M. Hsu

Lubrication may be defined as any method used to achieve control of friction and wear of interacting surfaces in relative motion under load. Gases, liquids, and solids have been used successfully as lubricants. To prevent surface contact, liquids and gases provide a film under hydrodynamic pressure to support the load.When the load is high and/or the speed is low, the hydrodynamic or hydrostatic pressure may not be sufficient and the surfaces come into close contact. The amount and the extent of the surface contact depends on many factors: surface roughness, fluid film pressure, normal load, hardness of the materials, etc. When the surfaces come into close contact, many of the asperities undergo elastic deformation. The condition is generally referred to as elasto-hydrodynamic lubrication (EHL). EHL theories are well-developed. They describe and predict the surface temperatures, fluid film thickness, and hydrodynamic pressures. Contact pressure increases beyond the EHL conditions causes asperities to deform plastically and thinning of the fluid film. When the average fluid film thickness falls below the average surface roughness, the interaction between the contacting surfaces becomes the dominant factor in supporting the load.This condition is referred to as the boundary lubrication (BL) regime. Theories for BL are not well-developed and the detailed processes are not understood. The classical view of boundary lubrication postulates the formation of a surface chemical film which is easily sheared and protects the surface.


2014 ◽  
Vol 592-594 ◽  
pp. 1371-1375
Author(s):  
Nitesh Talekar ◽  
Punit Kumar

Consideration of surface roughness in steady state EHL line contact is the first step towards understanding the lubrication of rough surface problem. Current paper investigates the use of sinusoidal waviness in the contact; more precisely it gives performance of real fluid in EHL line contact. The effect of various parameters like rolling velocity (U) and maximum Hertzian pressure (ph) on surface roughness by using properties of linear and exponential piezo-viscosity is taken into consideration to evaluate behavior of pressure distribution of load carrying fluid film and film thickness. Full isothermal, Newtonian simulation of EHL problem gives described effects. Spiking or fluctuation of pressure and film thickness curves is expected to show presence of irregularities on the surface chosen and amount of fluctuation depends on certain parameters and intensity of irregularities present. Rolling side domain of-4.5 ≤ X ≤ 1.5 with grid size ∆X=0.01375 is selected. A computer code is developed to solve Reynolds equation, which governs the generation of pressure in the lubricated contact zone is discritized and solved along with load balance equation using Newton-Raphson technique.


1992 ◽  
Vol 114 (1) ◽  
pp. 181-185 ◽  
Author(s):  
K. To̸nder

A new lubrication concept is presented, Deep Disconnected Cavities. It differs from the lubrication of microcavities, previously treated by other authors, by the deepness of the cavities. The validity of Reynolds’ equation and nonturbulent conditions are assumed. By a Taylor expansion scheme, it is shown that the roughness effects are expressible in terms of roughness factors modifying the Reynolds equation, similar to those proposed by Patir and Cheng (1978). Unlike those established for ordinary roughness, the DDC factors are independent of local film thickness and roughness amplitude (cavity depth), and may therefore be used to modify standard hydro-dynamic parameters. By a different mathematical approach, involving upper and lower bounds on the various hydrodynamic quantities, it is found that Reynolds’ equation and all the other hydrodynamic expressions may be written just as for smooth surfaces, with the following modifications: 1. The film thickness should be expressed by the minimum gap function, and not by the mean gap function. 2. There are, in general, three effective viscosities, lower than the physical one, two of which are associated with the x and y directions respectively and appear in the modified Reynolds equation as well as in the flow terms. The third one appears only in the expression for shear stress.


2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Prashant G. Khakse ◽  
Vikas M. Phalle ◽  
S. S. Mantha

The present paper deals with the performance analysis of a nonrecessed hole-entry hydrostatic/hybrid conical journal bearing with capillary restrictors. Finite element method has been used for solving the modified Reynolds equation governing the flow of lubricant in the clearance space of journal and bearing. The hole-entry hybrid conical journal bearing performance characteristics have been depicted for a wide range of radial load parameter (W¯r  = 0.25–1.5) with uniform distribution of holes at an angle of 30 deg in the circumferential direction. The numerically simulated results have been presented in terms of maximum fluid film pressure, minimum fluid film thickness, lubricant flow rate, direct fluid film stiffness coefficients, direct fluid film damping coefficients, and stability threshold speed. However, the proposed investigation of nonrecess hole-entry hybrid conical journal bearing shows important performance for bearing stiffness and minimum fluid film thickness at variable radial load and at given operating speed.


Sign in / Sign up

Export Citation Format

Share Document