Strength Prediction of Laminated Composites upon Independent Constituent Properties

2015 ◽  
Vol 665 ◽  
pp. 153-156
Author(s):  
Zheng Ming Huang ◽  
Li Min Xin

To predict ultimate strength of a laminated composite subjected to any load only using its constituent fiber and matrix properties measured independently, three challenging problems must be resolved with high success. First, internal stresses in the fiber and matrix must be accurately determined. Second, efficient failure detection for laminae and laminate upon the internal stresses must be achieved. Last but not the least, input data for the in-situ strengths of the constituents must be defined correctly from their original counterparts, as the former, different from the latter, are immeasurable. This presentation briefly summarizes our work on the targeted subject. All of the three issues have been systematically addressed with reasonable success.

2020 ◽  
Author(s):  
Satoshi Morooka ◽  
Nobuo Nakada ◽  
Yuhki Tsukada ◽  
Wu Gong ◽  
Takuro Kawasaki ◽  
...  

2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Jyotikalpa Bora ◽  
Sushen Kirtania

Abstract A comparative study of elastic properties and mode I fracture energy has been presented between conventional carbon fibre (CF)/epoxy and advanced carbon nanotube (CNT)/epoxy laminated composite materials. The volume fraction of CNT fibres has been considered as 15%, 30%, and 60% whereas; the volume fraction of CF has been kept constant at 60%. Three stacking sequences of the laminates viz.[0/0/0/0], [0/90/0/90] and [0/30/–30/90] have been considered in the present analysis. Periodic microstructure model has been used to calculate the elastic properties of the laminated composites. It has been observed analytically that the addition of only 15% CNT in epoxy will give almost the same value of longitudinal Young’s modulus as compared to the addition of 60% CF in epoxy. Finite element (FE) analysis of double cantilever beam specimens made from laminated composite has also been performed. It has been observed from FE analysis that the addition of 15% CNT in epoxy will also give almost the same value of mode I fracture energy as compared to the addition of 60% CF in epoxy. The value of mode I fracture energy for [0/0/0/0] laminated composite is two times higher than the other two types of laminated composites.


2021 ◽  
pp. 002199832110200
Author(s):  
H Ersen Balcıoğlu ◽  
Raif Sakin ◽  
Halit Gün

Fiber-reinforced laminated composite is often used in harsh environments that may affect their static stability and long-term durability as well as residual strength. In this study, the effect of heavy chemical environments such as acid and alkaline and retaining time for these environments on flexural strength and flexural fatigue behavior of carbon/epoxy laminated composites were investigated. In this context, carbon/epoxy was retained into an acidic and alkaline solution having 5%, 15%, and 25% concentration by weight for 1–4 months. Fatigue behavior of carbon/epoxy was determined under dynamic flexural load, which corresponds to 80%, 70%, 60%, 50%, and 40% of static three-point bending strength of the test sample. SEM image of damaged specimens was taken to describe the failure mechanism of damage which occurs after fatigue. Also, to better understand environmental condition on the fatigue life, results were compared with results of carbon/epoxy laminated composites, which were not retained into any environments (unretained). The test results showed that the solution type, solution concentration, and retaining time caused noticeable changes in the static and dynamic strengths of carbon/epoxy laminated composites.


2014 ◽  
Vol 651-653 ◽  
pp. 1370-1373
Author(s):  
Yun Chao Gu ◽  
Long Bin Liu ◽  
Shuai Cao ◽  
Hou Di Xiao ◽  
Ming Yun Lv

The tearing behavior of fiber-reinforced laminated composite textile plays the key role in the decision of mechanics performance of high altitude airship envelop material, even directly deciding its safety and stability. This paper, based on typical woven fabricated fiber yarns’ characteristics of geometry and mechanics, adopts Euler-displacement deformation analysis to explore yarn bundles deformation effects on tearing behavior and strength of envelope material with prefabricated damage and crack. Also, models with prefabricated crack with different size and textile density are respectively built to find factors that affect tearing behavior and strength of envelope material. From tests, it can be observed that the built models for predicting its tearing strength are in conformity with the experimental data. Nonlinear relationship is reflected between the initial crack width or yarn bundles density with tearing strength. Conclusively, the methods and models adopted in this paper provide an effective and innovative mind on tearing behavior and strength of fiber reinforced envelope material and make the foundation for its engineering application.


2021 ◽  
Author(s):  
ALEXANDER D. SNYDER ◽  
ZACHARY J. PHILLIPS ◽  
JASON F. PATRICK

Fiber-reinforced polymer composites are attractive structural materials due to their high specific strength/stiffness and excellent corrosion resistance. However, the lack of through-thickness reinforcement in laminated composites creates inherent susceptibility to fiber-matrix debonding, i.e., interlaminar delamination. This internal damage mode has proven difficult to detect and nearly impossible to repair via conventional methods, and therefore, remains a significant factor limiting the reliability of composite laminates in lightweight structures. Thus, novel approaches for mitigation (e.g., self-healing) of this incessant damage mode are of tremendous interest. Self-healing strategies involving sequestration of reactive liquids, i.e. microcapsule and microvascular systems, show promise for the extending service- life of laminated composites. However, limited heal cycles, long reaction times (hours/days), and variable stability of chemical agents under changing environmental conditions remain formidable research challenges. Intrinsic self- healing approaches that utilize reversible bonds in the host material circumvent many of these limitations and offer the potential for unlimited heal cycles. Here we detail the development of an intrinsic self-healing woven composite laminate based on thermally-induced dynamic bond re-association of 3D-printed polymer interlayers. In contrast to prior work, self-repair of the laminate occurs in situ and below the glass-transition temperature of the epoxy matrix, and maintains >85% of the elastic modulus during healing. This new platform has been deployed in both glass and carbon-fiber composites, demonstrating application versatility. Remarkably, up to 20 rapid (minute-scale) self-healing cycles have been achieved with healing efficiencies hovering 100% of the interlayer toughened (4-5x) composite laminate. This latest self-healing advancement exhibits unprecedented potential for perpetual in-service repair along with material multi-functionality (e.g., deicing ability) to meet modern application demands.


Author(s):  
Masahiro Hojo ◽  
Ryosaku Hashimoto ◽  
Akinori Ogawa ◽  
Yasushi Sofue ◽  
Yukio Matsuda

Anti-symmetrically laminated composites have coupling effects between tensile stress and twisting deformation, and are very attractive as fan blade materials of aircraft engines. Blades fabricated by anti-symmetrically laminated composites can automatically adjust the stagger angle to better aerodynamic conditions with change of axial force or rotational speed owing to the coupling effects. Thus, the anti-symmetrically laminated composite blades are expected to improve aerodynamic efficiency and the stability of aircraft engines. In this paper, the mechanical behavior of anti-symmetrically laminated composite blades is evaluated by spin tests and finite element analyses. Three kinds of blades fabricated by carbon/epoxy laminated composites in different anti-symmetrical stacking sequences were tested. A non-contact measurement technique using a multi-channel optical fiber sensor was used for measurements of blade deformations at high-speed rotating conditions, up to 10,000 rpm. The twisted angle change at the blade tip could be successfully measured. The twisted angle change increased in proportion to the second power of rotational speed, and the maximum angle change was about 4 degree at 10,000 rpm. The finite element analysis results agreed well with the spin test results. Furthermore, the three-dimensional deformation of the test blades was evaluated based on finite element analyses.


2020 ◽  
Vol 24 (8) ◽  
pp. 4061-4090 ◽  
Author(s):  
Silvia Terzago ◽  
Valentina Andreoli ◽  
Gabriele Arduini ◽  
Gianpaolo Balsamo ◽  
Lorenzo Campo ◽  
...  

Abstract. Snow models are usually evaluated at sites providing high-quality meteorological data, so that the uncertainty in the meteorological input data can be neglected when assessing model performances. However, high-quality input data are rarely available in mountain areas and, in practical applications, the meteorological forcing used to drive snow models is typically derived from spatial interpolation of the available in situ data or from reanalyses, whose accuracy can be considerably lower. In order to fully characterize the performances of a snow model, the model sensitivity to errors in the input data should be quantified. In this study we test the ability of six snow models to reproduce snow water equivalent, snow density and snow depth when they are forced by meteorological input data with gradually lower accuracy. The SNOWPACK, GEOTOP, HTESSEL, UTOPIA, SMASH and S3M snow models are forced, first, with high-quality measurements performed at the experimental site of Torgnon, located at 2160 m a.s.l. in the Italian Alps (control run). Then, the models are forced by data at gradually lower temporal and/or spatial resolution, obtained by (i) sampling the original Torgnon 30 min time series at 3, 6, and 12 h, (ii) spatially interpolating neighbouring in situ station measurements and (iii) extracting information from GLDAS, ERA5 and ERA-Interim reanalyses at the grid point closest to the Torgnon site. Since the selected models are characterized by different degrees of complexity, from highly sophisticated multi-layer snow models to simple, empirical, single-layer snow schemes, we also discuss the results of these experiments in relation to the model complexity. The results show that, when forced by accurate 30 min resolution weather station data, the single-layer, intermediate-complexity snow models HTESSEL and UTOPIA provide similar skills to the more sophisticated multi-layer model SNOWPACK, and these three models show better agreement with observations and more robust performances over different seasons compared to the lower-complexity models SMASH and S3M. All models forced by 3-hourly data provide similar skills to the control run, while the use of 6- and 12-hourly temporal resolution forcings may lead to a reduction in model performances if the incoming shortwave radiation is not properly represented. The SMASH model generally shows low sensitivity to the temporal degradation of the input data. Spatially interpolated data from neighbouring stations and reanalyses are found to be adequate forcings, provided that temperature and precipitation variables are not affected by large biases over the considered period. However, a simple bias-adjustment technique applied to ERA-Interim temperatures allowed all models to achieve similar performances to the control run. Regardless of their complexity, all models show weaknesses in the representation of the snow density.


2011 ◽  
Vol 287-290 ◽  
pp. 3085-3088
Author(s):  
Yao Min Zhu ◽  
Shan Shan Wang ◽  
Feng Zhang Ren

Electroplating was employed to prepare Cu films and Ni films on Ag substrates. The average internal stresses in Cu film and Ni film were measured in situ by cantilever beam test. The values of experimental internal stresses were compared with theoretical internal stresses. The results showed that the internal stresses of Cu film and Ni film decreased with the increase of the film thickness. The reduced gradient was faster. The values of experimental and theoretical internal stresses had the same variation trend with film thickness and the same characteristics (tensile stress). Theoretical calculation model of internal stress was of accuracy. The internal stress for the same substrate was in relation to the film material.


Sign in / Sign up

Export Citation Format

Share Document