Analysis on High Cycle Fatigue Properties and Fatigue Damage Evolution of TC25 Titanium Alloy

2016 ◽  
Vol 697 ◽  
pp. 658-663
Author(s):  
Rong Guo Zhao ◽  
Ya Feng Liu ◽  
Yong Zhou Jiang ◽  
Xi Yan Luo ◽  
Qi Bang Li ◽  
...  

The high cycle fatigue tests for smooth specimens of TC25 titanium alloy under different stress ratios are carried out on a MTS 809 Material Test Machine at a given maximum stress level of 917MPa at ambient temperature, the high cycle fatigue lifetimes for such alloy are measured, and the effects of stress amplitude and mean stress on high cycle fatigue life are analyzed. The initial resistance is measured at the two ends of smooth specimen of TC25 titanium alloy, every a certain cycles, the fatigue test is interrupted, and the current resistance values at various fatigue cycles are measured. The ratio of resistance change is adopted to characterize the fatigue damage evolution in TC25 titanium alloy, and a modified Chaboche damage model is applied to derive the fatigue damage evolution equation. The results show that the theoretical calculated values agree well with the test data, which indicates that the modified Chaboche damage model can precisely describe the accumulated damage in TC25 titanium alloy at high cycle fatigue under unaxial loading. Finally, the high cycle fatigue lifetimes for TC25 titanium alloy specimens at different strain hardening rates are tested at a given stress ratio of 0.1, the effect of strain hardening on fatigue life is investigated based on a microstructure analysis on TC25 titanium alloy, and an expression between fatigue life and strain hardening rate is derived

2013 ◽  
Vol 569-570 ◽  
pp. 1029-1035
Author(s):  
Magd Abdel Wahab ◽  
Irfan Hilmy ◽  
Reza Hojjati-Talemi

In this paper, Continuum Damage Mechanics (CDM) theory is applied to low cycle and high cycle fatigue problems. Damage evolution laws are derived from thermodynamic principles and the fatigue number of cycles to crack initiation is expressed in terms of the range of applied stresses, triaxiality function and material constants termed as damage parameters. Low cycle fatigue damage evolution law is applied to adhesively bonded single lap joint. Damage parameters as function of stress are extracted from the fatigue tests and the damage model. High cycle fatigue damage model is applied to fretting fatigue test specimens and is integrated within a Finite Element Analysis (FEA) code in order to predict the number of cycles to crack initiation. Fretting fatigue problems involve two types of analyses; namely contact mechanics and damage/fracture mechanics. The high cycle fatigue damage evolution law takes into account the effect of different parameters such as contact geometry, axial stress, normal load and tangential load.


2006 ◽  
Vol 514-516 ◽  
pp. 804-809
Author(s):  
S. Gao ◽  
Ewald Werner

The forging die material, a high strength steel designated W513 is considered in this paper. A fatigue damage model, based on thermodynamics and continuum damage mechanics, is constructed in which both the previous damage and the loading sequence are considered. The unknown material parameters in the model are identified from low cycle fatigue tests. Damage evolution under multi-level fatigue loading is investigated. The results show that the fatigue life is closely related to the loading sequence. The fatigue life of the materials with low fatigue loading first followed by high fatigue loading is longer than that for the reversed loading sequence.


Author(s):  
Geovana Drumond ◽  
Bianca Pinheiro ◽  
Ilson Pasqualino ◽  
Francine Roudet ◽  
Didier Chicot

The hardness of a material shows its ability to resist to microplastic deformation caused by indentation or penetration and is closely related to the plastic slip capacity of the material. Therefore, it could be significant to study the resistance to microplastic deformations based on microhardness changes on the surface, and the associated accumulation of fatigue damage. The present work is part of a research study being carried out with the aim of proposing a new method based on microstructural changes, represented by a fatigue damage indicator, to predict fatigue life of steel structures submitted to cyclic loads, before macroscopic cracking. Here, Berkovich indentation tests were carried out in the samples previously submitted to high cycle fatigue (HCF) tests. It was observed that the major changes in the microhardness values occurred at the surface of the material below 3 μm of indentation depth, and around 20% of the fatigue life of the material, proving that microcracking is a surface phenomenon. So, the results obtained for the surface of the specimen and at the beginning of the fatigue life of the material will be considered in the proposal of a new method to estimate the fatigue life of metal structures.


2020 ◽  
Vol 63 (1) ◽  
pp. 161-172
Author(s):  
Shyam Suresh ◽  
Stefan B. Lindström ◽  
Carl-Johan Thore ◽  
Anders Klarbring

AbstractWe propose a topology optimization method for design of transversely isotropic elastic continua subject to high-cycle fatigue. The method is applicable to design of additive manufactured components, where transverse isotropy is often manifested in the form of a lower Young’s modulus but a higher fatigue strength in the build direction. The fatigue constraint is based on a continuous-time model in the form of ordinary differential equations governing the time evolution of fatigue damage at each point in the design domain. Such evolution occurs when the stress state lies outside a so-called endurance surface that moves in stress space depending on the current stress and a back-stress tensor. Pointwise bounds on the fatigue damage are approximated using a smooth aggregation function, and the fatigue sensitivities are determined by the adjoint method. Several problems where the objective is to minimize mass are solved numerically. The problems involve non-periodic proportional and non-proportional load histories. Two alloy steels, AISI-SAE 4340 and 34CrMo6, are treated and the respective as well as the combined impact of transversely isotropic elastic and fatigue properties on the design are compared.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1768
Author(s):  
Lizhen Huang ◽  
Weilian Qu ◽  
Ernian Zhao

The multiaxial fatigue critical plane method can be used to evaluate the extremely-low-cycle fatigue (ELCF) damage of beam-to-column welded joints in steel frameworks subjected to strong seismic activity. In this paper, fatigue damage models using structural detail parameters are studied. Firstly, the fatigue properties obtained from experiments are adopted to assess ELCF life for steel frameworks. In these experiments, two types of welded specimens, namely, plate butt weld (PB) and cruciform load-carrying groove weld (CLG), are designed according to the structural details of steel beam and box column joints, in which both structural details and welded factors are taken into account. Secondly, experiments are performed on three full-scale steel welded beam-to-column joints to determine the contribution of stress and/or strain to damage parameters. Finally, we introduce a modification of the most popular fatigue damage model of Fatemi and Socie (FS), modified by us in a previous study, for damage evaluation, and compare this with Shang and Wang (SW) in order to examine the applicability of the fatigue properties of PB and CLG. This study shows that the modified FS model using the fatigue properties of CLG can predict the crack initiation life and evaluate the damage of beam-to-column welded joints, and can be subsequently used for further investigation of the damage evolution law.


Author(s):  
Ming Zhang ◽  
Weiqiang Wang ◽  
Aiju Li

The authors researched the effects of specimen size on the very high cycle fatigue properties of FV520B-I through ultrasonic fatigue testing. The test results showed that the very high cycle fatigue mechanism was not changed and the fatigue properties declined as the specimen size increased. The S-N curve moved downward and the fatigue life decreased under the same stress level maybe due to the heat effects of large specimens in tests. The fatigue strength and the fatigue life were predicted by relevant models. The prediction of fatigue strength was close to test result, and the prediction of fatigue life was less effective compared with the previous prediction of small size specimen test results.


2014 ◽  
Vol 941-944 ◽  
pp. 1477-1482
Author(s):  
Xu Tao Nie ◽  
Wan Hua Chen ◽  
Yuan Xing Wang

High-cycle fatigue damage analysis and life prediction is a most crucial problem in the research field of solid mechanics. Based on the thermodynamic potentials in the framework of thermodynamics a numerical method for high-cycle fatigue damage was studied and provided by using a two-scale damage model. Furthermore, according to the “jump-in-cycles” procedure the numerical simulation of high-cycle fatigue damage was implemented in a user subroutine of ABAQUS software. Finally, a numerical simulation instance of high-cycle fatigue damage was provided and compared with a set of test data, which indicates that the numerical simulation method presented is reasonable and applicable.


Sign in / Sign up

Export Citation Format

Share Document