An Improved Thermo-Ratcheting Boundary of Pressure Pipeline

2016 ◽  
Vol 725 ◽  
pp. 311-315
Author(s):  
Qian Hua Kan ◽  
Jian Li ◽  
Han Jiang ◽  
Guo Zheng Kang

The thermal ratcheting boundary of pressure pipeline is a popular topic in nuclear power engineering. The existed thermal ratcheting boundary based on the Bree diagram is conservative for structures subjected to the thermo-mechanically coupled loadings since it was obtained only from an elastic-perfectly plastic model. Therefore, it is necessary to improve the existed thermal ratcheting boundary based on a reasonable constitutive model. The Bree diagram was validated firstly by the linear relationship between the plastic strain increment and mechanical stress by finite element method. And then the influences of different constitutive models, such as elastic-perfectly plastic, multi-linear kinematic hardening, Chaboche and Abdel Karim-Ohno models, on the thermal ratcheting boundary of pressure pipeline were investigated numerically. It is found that the elastic-perfectly plastic and multi-linear kinematic hardening models provide the lower and upper bounds for the thermal ratcheting boundary, respectively. Finally, an improved thermal ratcheting boundary by introducing the dimensionless axial tensile stress was proposed based on the Bree diagram, the improved thermal ratcheting boundary covered the present cases with different ratios of mechanical stress over thermal stress.

Author(s):  
Marina Trajković-Milenković ◽  
Otto T Bruhns ◽  
Andrija Zorić

The main goal of this work is to test the possibility of a newly introduced constitutive law to model the behaviour of the isotropic elastic-perfectly plastic material which is exposed to large elastoplastic deformations. The proposed constitutive relation is based on the hypo-elastic relation and the inelastic INTERATOM model. The verification of the model is done by its implementation into the commercial software ABAQUS/Standard via the user subroutine UMAT. For that purpose, the large simple shear problem is studied where selected objective corotational rates, i.e. the logarithmic rate, the Jaumann rate and the Green-Naghdi rate, are individually implemented in the aforementioned constitutive relations. The obtained results are compared mutually and with the relevant literature. The proposed constitutive model is also used to test the behaviour of the part of a real engineering structure, i.e. a seismic isolator, in order to obtain the correct input data for further analysis of superstructure behaviour due to seismic excitation.


2019 ◽  
Vol 262 ◽  
pp. 04002
Author(s):  
Leszek Chomacki

One of the basic roles of foundations is to safely transfer loads from the structure to the subsoil in a controlled manner. Often a key parameter in deciding whether the foundation was designed correctly is the value of settlement of the building and the ground around it. This paper attempts to numerically reproduce the measured settlement of a high-rise building using geotechnical parameters already available. For this purpose, numerical calculations were carried out using two constitutive soil models: the elastic-perfectly plastic model with Mohr-Coulomb plastic criteria (MC) model and the Hardening Soil (HS) model. The resulting settlement values were compared with surveying measurements taken during and after the building’s construction. In the summary the results obtained with the use of different constitutive models, the calculation process and the adopted soil parameters are analysed and discussed.


2017 ◽  
Vol 11 (02) ◽  
pp. 1750002 ◽  
Author(s):  
Yulong Feng ◽  
Jing Wu ◽  
Chunlin Wang ◽  
Shaoping Meng

Numerical simulation is an important measure to study the seismic performance of buckling-restrained braced frames (BRBFs). Practically, some simplified models, such as the elastic–plastic with kinematic hardening model and the elastic perfectly-plastic model, are used to simulate the behavior of buckling-restrained brace (BRBs). To provide structural engineers the reference of errors when simplified models are used, this paper comparatively evaluates the effect of the BRB model on seismic structural responses using the OpenSees software. A comparison is made on six-storey and 16-storey BRBFs with rigid beam-to-column connections; these are designed according to Chinese seismic design code. Moreover, the effects of the post-yielding stiffness ratio of frame [Formula: see text] and the stiffness ratio of BRB to frame [Formula: see text] on the errors are specifically investigated through a parametric study of both BRBFs. The results show that the seismic response average errors of the simplified models are mostly less than 5%, which satisfies the engineering requirements.


Author(s):  
Yukio Takahashi ◽  
Yoshihiko Tanaka

It is essential to predict the behavior of nuclear piping system under seismic loading to evaluate the structural integrity of nuclear power plants. Relatively large stress cycles may be applied to the piping systems under severe seismic loading and plastic deformation may occur cyclically in some portion of the systems. Accurate description of inelastic deformation under cyclic loading is indispensable for the precise estimation of strain cycles and accumulation potentially leading to the failure due to fatigue-ratcheting interaction. Elastic-plastic constitutive models based on the nonlinear kinematic hardening rule proposed by Ohno and Wang were developed for type 316 austenitic stainless steel and carbon steel JIS STPT410 (similar to ASTM A106 Gr.B), both of which are used in piping systems in nuclear power plants. Different deformation characteristics under cyclic loading in terms of memory of prior hardening were observed on these two materials and they were reflected in the modeling. Results of simulations under various loading conditions were compared with the test data to demonstrate the high capability of the constitutive models.


1974 ◽  
Vol 96 (3) ◽  
pp. 214-221 ◽  
Author(s):  
T. M. Mulcahy

Analytical comparisons are made between the thermal ratcheting response of a kinematic hardening material, a perfectly plastic, and an isotropic hardening material for a two-element assembly. Significant differences were found in the range of mechanical and thermal loading for which ratcheting occurred and the magnitude of the strain accumulation when ratcheting did occur. The kinematic hardening strain accumulation predicted was always smallest.


2020 ◽  
Vol 42 (3) ◽  
pp. 191-209
Author(s):  
Lylia Deghoul ◽  
Smail Gabi ◽  
Adam Hamrouni

AbstractIn coastal regions, earthquakes caused severe damage to marine structures. Many researchers have conducted numerical investigations in order to understand the dynamic behavior of these structures. The most frequently used model in numerical calculations of soil is the linear-elastic perfectly plastic model with a Mohr-Coulomb failure criterion (MC model). It is recommended to use this model to represent a first-order approximation of soil behavior. Therefore, it is necessary to accommodate soil constitutive models for the specific geotechnical problems.In this paper, three soil constitutive models with different accuracy were applied by using the two-dimensional finite element software PLAXIS to study the behavior of pile-supported wharf embedded in rock dike, under the 1989 Loma Prieta earthquake. These models are: a linear-elastic perfectly plastic model (MC model), an elastoplastic model with isotropic hardening (HS model), and the Hardening Soil model with an extension to the small-strain stiffness (HSS model).A typical pile-supported wharf structure with batter piles from the western United States ports was selected to perform the study. The wharf included cut-slope (sliver) rock dike configuration, which is constituted by a thin layer of rockfill overlaid by a slope of loose sand. The foundation soil and the backfill soil behind the wharf were all dense sand. The soil parameters used in the study were calibrated in numerical soil element tests (Oedometer and Triaxial tests).The wharf displacement and pore pressure results obtained using models with different accuracy were compared to the numerical results of Heidary-Torkamani et al.[28] It was found that the Hardening Soil model with small-strain stiffness (HSS model) gives clearly better results than the MC and HS models.Afterwards, the pile displacements in sloping rockfill were analyzed. The displacement time histories of the rock dike at the top and at the toe were also exposed. It can be noted that during the earthquake there was a significant lateral ground displacement at the upper part of the embankment due to the liquefaction of loose sand. This movement caused displacement at the dike top greater than its displacement at the toe. Consequently, the behavior of the wharf was affected and the pile displacements were important, specially the piles closest to the dike top.


1989 ◽  
Vol 111 (2) ◽  
pp. 309-314 ◽  
Author(s):  
A. M. Kumar ◽  
G. T. Hahn ◽  
V. Bhargava ◽  
C. Rubin

In the past, the mechanics of repeated rolling and sliding contact could only be treated for the idealized, elastic-perfectly-plastic (and isotropic) cyclic materials behavior, albeit approximately. They have not proven useful because the real cyclic plastic behavior of contacting materials is anything but perfectly plastic or isotropic. Using finite element methods, the authors have developed techniques for treating elastic-linear-kinematic hardening-plastic (ELKP) behavior, an idealization that comes much closer to the behavior of low, medium, and high hardness steels. In an earlier paper, the authors have examined rolling and sliding on rail steel, which is much softer than hardened bearing steel and displays quite different ELKP properties. The present paper offers the first results for repeated rolling and sliding for high strength bearing steel ELKP behavior and material properties.


2012 ◽  
Vol 12 (01) ◽  
pp. 75-94 ◽  
Author(s):  
S. Q. LI ◽  
J. F. CHEN ◽  
L. A. BISBY ◽  
Y. M. HU ◽  
J. G. TENG

The confinement of concrete columns using fiber-reinforced polymer (FRP) jackets or wraps is a popular structural retrofitting technique. More recently, the benefits of FRP confinement of concrete-filled steel tubes have also been explored by researchers. Failure of such FRP-confined concrete-filled steel tubes is usually governed by the rupture of the FRP jacket in the hoop direction. However, the observed FRP hoop strain at failure (i.e. the hoop rupture strain) is typically lower than the ultimate tensile strain from a flat coupon test. Many factors may contribute to this phenomenon, one of which is the geometrical discontinuities at both the starting and finishing ends of the wrapping process commonly used to form an FRP jacket. This paper examines the effect of these geometrical discontinuities on the hoop rupture strain of FRP jackets in FRP-confined concrete-filled circular steel tubes. Detailed finite element (FE) analyses conducted using both linear elastic and elastic-perfectly plastic adhesive constitutive models are presented. Comparison between the FE predictions and available test results shows that the hoop rupture strains of FRP jackets predicted by FE analysis using an elastic-perfectly plastic adhesive model are in reasonable agreement with the test results. The influence of parameters such as the FRP thickness, FRP orthotropy, FRP elastic modulus, adhesive yield strength, adhesive thickness, and column size are examined.


Author(s):  
Biplab Chatterjee ◽  
Prasanta Sahoo

Loading-unloading behavior of a deformable sphere with a rigid flat under full stick contact condition is investigated for varying strain hardening. The study considers various tangent modulus using the finite element software ANSYS. Both the bilinear kinematic hardening and isotropic hardening models are considered. Numerical simulation reveals the qualitative similarity between kinematic and isotropic hardening regarding the variation of interfacial parameters during loading-unloading for various tangent modulus. It is found that the material with kinematic hardening dissipates more energy than the material with isotropic hardening during unloading. However for elastic perfectly plastic material, the loading-unloading behavior is insensitive to hardening model.


2019 ◽  
Vol 92 ◽  
pp. 16014
Author(s):  
Franz Tschuchnigg ◽  
Gertraud Medicus ◽  
Barbara Schneider-Muntau

The results of slope stability analysis are not unique. Different factors of safety are obtained investigating the same slope. The differences result from different constitutive models including different failure surfaces. In this contribution, different strength reduction techniques for two different constitutive models (linear elastic - perfectly plastic model using a Mohr-Coulomb failure criterion and barodesy) have been investigated on slope stability calculations for two different slope inclinations. The parameters for Mohr – Coulomb are calibrated on peak states of element tests simulated with barodesy for different void ratios. For both slopes the predictions of the factors of safety are higher with barodesy than with Mohr-Coulomb. The difference is to some extend explained by the different shapes of failure surfaces and thus different values for peak strength under plane strain conditions. The plane strain predictions of Mohr-Coulomb are conservative compared to barodesy, where the failure surface coincides with Matsuoka-Nakai.


Sign in / Sign up

Export Citation Format

Share Document