Controlled Preparation and Characterization of Titanium Series Functional Pigment and its Application in Coatings

2017 ◽  
Vol 726 ◽  
pp. 308-315
Author(s):  
Yu Deng ◽  
Jian Xun Zheng ◽  
Qiang Qiang Wang ◽  
Wei Bo Yang ◽  
Song Song Zhang

In our recent work, we synthesize several spherical rutile TiO2 powders with different average particle size though hydrothermal method using TiCl4 under lower temperature in a shorter reaction period. Afterwards, solar heat-reflection coatings were prepared by using the TiO2 as pigment. The TiO2 powders were characterized by XRD to determine the phase of crystal. The morphology and particle size were observed by using SEM, and the spectral reflectance of the powder samples and coatings were measured using UV/VIS/NIR spectrophotometer. In order to measure the temperature on the back of coatings, the self-assembled equipment which consisted of solar lamps and surface temperature sensors connected to a data logging system was invented. The test results showed that the shape, average particle size and size distribution were closed-packed state and a bigger mean particle size had higher reflectance intensity. Meanwhile, the reflectance was closely connected to the particle size distribution. Actually, the coatings dispersed TiO2 powder with desired size distribution had excellent performance.

Drug Research ◽  
2017 ◽  
Vol 67 (05) ◽  
pp. 266-270 ◽  
Author(s):  
Ebrahim Izadi ◽  
Ali Rasooli ◽  
Abolfazl Akbarzadeh ◽  
Soodabeh Davaran

AbstractThrough the present study, an eco-friendly method was used to synthesize the gold nanoparticles (GNPs) by using the sodium citrate and extract of the soybean seed as reducing the agents at PH 3. X-Ray diffraction (XRD) method was used to evaluate the crystal structure of as-synthesized NPs and it’s revealed that this method leads to well crystallized GNPs. In order to determine the particle size and their distribution, field emission scanning microscopy (FE-SEM) and dynamic light scattering (DLS) were used. The results showed that, the average particle size distribution of synthesized GNPs in solutions containing of the soybean extract and 1% citrate at PH 3 is about 109.6 and 140.9 nm, respectively. Also, we find that the average size of GNPs is 40 and 33 nm from solutions of citrate and soybean extract, respectively. It was concluded that using the extract of soybean seeds as reducing agent can lead to GNPs with small size and narrow size distribution.


MRS Advances ◽  
2018 ◽  
Vol 3 (42-43) ◽  
pp. 2519-2526 ◽  
Author(s):  
F.O. Kolawole ◽  
S.K. Kolawole ◽  
J.O. Agunsoye ◽  
S.A. Bello ◽  
J.A. Adebisi ◽  
...  

AbstractSynthesis and characterization of cassava bark nanoparticles (CBNPs) was carried out using ball milling at 36, 48, 60 and 72 hours. The morphology study was done using SEM and the Gwyddion software was used to determine the particle sizes from the SEM images. The particle distribution for the un-milled cassava bark (CB) was between 1.25 + 0.06 to 19.92 + 1.00 µm, while after milling for 36, 48, 60 and 72 hours the average particle size were 4.07 + 0.20, 4.00 + 0.20 µm, 80.90 + 4.05, 74.50 + 3.73 nm respectively. 13.68 + 0.68 nm was obtained by XRD using Scherrer equation after milling for 72 hours and the XRD results revealed the presence of compounds such as SiO2, CaCO3 and KAlSi3O8. TEM was used to determine nanoparticle size distribution after milling for 72 hours and the particle size ranged from 9.73 + 0.49 to 114.60 + 5.73 nm for cassava bark nanoparticles (CBNPs), EDX results showed trace element of Si, Ca, K, Fe, Al, O in the CB milled for 72hours.


2011 ◽  
Vol 415-417 ◽  
pp. 617-620 ◽  
Author(s):  
Yan Su ◽  
Ying Yun Lin ◽  
Yu Li Fu ◽  
Fan Qian ◽  
Xiu Pei Yang ◽  
...  

Water-soluble gold nanoparticles (AuNPs) were prepared using 2-mercapto-4-methyl-5- thiazoleacetic acid (MMTA) as a stabilizing agent and sodium borohydride (NaBH4) as a reducing agent. The AuNPs product was analyzed by transmission electron microscopy (TEM), UV-vis absorption spectroscopy and Fourier transform infrared spectroscopy (FTIR). The TEM image shows that the particles were well-dispersed and their average particle size is about 5 nm. The UV-vis absorption and FTIR spectra confirm that the MMTA-AuNPs was stabilized by the carboxylate ions present on the surface of the AuNPs.


Author(s):  
Mohammed Sabar Al-lami ◽  
Malath H. Oudah ◽  
Firas A. Rahi

This study was carried out to prepare and characterize domperidone nanoparticles to enhance solubility and the release rate. Domperidone is practically insoluble in water and has low and an erratic bioavailability range from 13%-17%. The domperidone nanoparticles were prepared by solvent/antisolvent precipitation method at different polymer:drug ratios of 1:1 and 2:1 using different polymers and grades of poly vinyl pyrolidone, hydroxy propyl methyl cellulose and sodium carboxymethyl cellulose as stabilizers. The effect of polymer type, ratio of polymer:drug, solvent:antisolvent ratio, stirring rate and stirring time on the particle size, were investigated and found to have a significant (p? 0.05) effect on particle size. The best formula was obtained with lowest average particle size of 84.05. This formula was studied for compatibility by FTIR and DSC, surface morphology by FESEM and crystalline state by XRPD. Then domperidone nanoparticles were formulated into a simple capsule dosage form in order to study of the in vitro release of drug from nanoparticles in comparison raw drug and mixture of polymer:drug ratios of 2:1. The release of domperidone from best formula was highly improved with a significant (p? 0.05) increase.


2007 ◽  
Vol 128 ◽  
pp. 97-100 ◽  
Author(s):  
Stephanie Möller ◽  
Janusz D. Fidelus ◽  
Witold Łojkowski

The aim of the work was to examine the influence of pH, high power ultrasound, surfactant and dopant quantity on the particle size distribution of ZrO2:Pr3+, with praseodymium content varying between 0.05 and 10 %. The nanopowders were obtained via a hydrothermal microwave driven process. To establish if the dopant was located on the surface of the zirconia nanoparticles, the particle size distribution, as a function of pH, was measured to obtain an estimate of the isoelectric point of the samples. All results indicated that the dopant was concentrated on the surface: the measurements of the particle size distribution show that the pH corresponding to maximum average particle size changes towards higher values when the Pr content increases. Measurements of the particle size distribution dependency on the application of high power ultrasound and the addition of the sodium dodecyl sulphate surfactant show that, under certain conditions, there is a better stabilisation of the nanopowders in a dispersion and undesirable agglomeration is hindered.


2010 ◽  
Vol 92 ◽  
pp. 163-169
Author(s):  
Hong Xia Qiao ◽  
Zhi Qiang Wei ◽  
Ming Ru Zhou ◽  
Zhong Mao He

Copper nanoparticles were successfully prepared in large scales by means of anodic arc discharging plasma method in inert atmosphere. The particle size, specific surface area, crystal structure and morphology of the samples were characterized by X-ray diffraction (XRD), BET equation, transmission electron microscopy (TEM) and the corresponding selected area electron diffraction (SAED). The experiment results indicate that the crystal structure of the samples is fcc structure as same as that of the bulk materials. The specific surface area is is 11 m2/g, with the particle size distribution ranging from 30 to 90 nm, the average particle size about 67nm obtained from TEM and confirmed from XRD and BET results. The nanoparticles have uniform size, higher purity, narrow size distribution and spherical shape can be prepared by this convenient and effective method.


2017 ◽  
Vol 263 ◽  
pp. 165-169
Author(s):  
Silvia Chowdhury ◽  
Faridah Yusof ◽  
Nadzril Sulaiman ◽  
Mohammad Omer Faruck

In this article, we have studied the process of silver nanoparticles (AgNPs) aggregation and to stop aggregation 0.3% Polyvinylpyrrolidone (PVP) was used. Aggregation study carried out via UV-vis spectroscopy and it is reported that the absorption spectrum of spherical silver nanoparticles were found a maximum peak at 420 nm wavelength. Furthermore, Transmission Electron Microscopy (TEM) were used to characterized the size and shape of AgNPs, where the average particle size is around 10 to 25 nm in diameter and the AgNPs shape is spherical. Next, Dynamic Light Scattering (DLS) were used, owing to observed size distribution and self-correlation of AgNPs.


2016 ◽  
Vol 18 (2) ◽  
pp. 131-139
Author(s):  
Kinga Łuczka ◽  
Barbara Grzmil ◽  
Bogumił Kic ◽  
Krzysztof Kowalczyk

Abstract Synthesis and characterization of the aluminum phosphates modified with ammonium, calcium and molybdenum were conducted. The influence of process parameters (reactive pressure and molar ratios) in the reaction mixture were studied. The contents of the individual components in the products were in the range of: 10.97–17.31 wt% Al, 2.65–13.32 wt% Ca, 0.70–3.11 wt% Mo, 4.36–8.38 wt% NH3, and 35.12–50.54 wt% P2O5. The materials obtained in the experiments were characterized by various physicochemical parameters. The absorption oil number was in the range from 67 to 89 of oil/100 g of product, the surface area was within the range of 4–76 m2/g, whereas the average particle size of products reached 282–370 nm. The Tafel tests revealed comparable anticorrosive properties of aluminum phosphates modified with ammonium, calcium, molybdenum in comparison with commercial phosphate.


2014 ◽  
Vol 793 ◽  
pp. 151-158 ◽  
Author(s):  
M. León-Carriedo ◽  
C.A. Gutiérrez Chavarría ◽  
J.L. Rodríguez Galicia ◽  
Jorge López-Cuevas ◽  
M.I. Pech Canul

In the present work, the characterization of monolithic materials formulated at different weight concentrations was conducted; employing two of the ceramic materials most used in the refractory industry, zircon and alumina. These monolithic materials were fabricated using colloidal techniques, specifically plaster casting mold, in order to obtain pieces with a higher particle consolidation and density, reducing porosity to lower values than the obtained using traditional shaping process of these materials. The monoliths were obtained employing two ceramic powders with different average particle size and morphology to achieve better packing in the green body. This characterization was carried out, firstly, determining the particle size of the raw materials by laser diffraction and the evaluation of particle morphology by scanning electron microscopy. Aqueous suspensions were formulated by containing both ceramic materials, which were dispersed with Tamol 963, and analyzed by rheometric techniques. Subsequently, bars were manufactured having the following dimensions; 4 mm wide, 3 mm thick and 45 mm in length, according to ASTM C1161-02cc, to be characterized microstructural and mechanically, also was observed the fracture habit after the mechanical test. As a final result, the materials formulated at higher alumina content showed higher density values, reaching 94.95% of the theoretical density, also showed a higher thermal expansion coefficient and high rupture modulus, reaching up to 600 MPa and Young modulus of 230 GPa. From the microstructure characterization it was observed that alumina matrix shows a transgranular fracture across the grains and zircon particles exhibited intergranular fracture among the grain boundaries.


Sign in / Sign up

Export Citation Format

Share Document