Synthesis, Crystal Structure and Luminescence Property on Cabazoly-Based Zinc Metal Organic Frameworks

2017 ◽  
Vol 727 ◽  
pp. 628-634
Author(s):  
Ying Jie Zhang ◽  
Li Xian Sun ◽  
Fen Xu

A novel zinc metal organic frameworks, named ZnL(2,2′-bpy), has been successfully synthesized, serving 3,6-dicarboxylic-9-ethylcarbazole acid (H2L) as ligand. This kind of ZnMOFs was characterized by FI-IR, elemental analysis, SEM, powder X-ray diffraction and single crystal X-ray diffraction to illustrate the structures. TG analysis was applied to investigate the thermostability. Structural analysis demonstrates that ZnMOFs possess triclinic crystal structure which is a 1D chain that occurs distorted-octahedral coordination geometry. Furthermore, the luminescent performance of ZnMOFs is performed and discussed in detail. The results show that ZnMOFs can emit blue luminescence originating, which is assigned to the ligand-to-metal charge transfer (LMCT).

2020 ◽  
Vol 75 (8) ◽  
pp. 727-732
Author(s):  
Chen Zhang ◽  
Jian-Qing Tao

AbstractA new Cu(II) metal-organic framework, [Cu(L)(OBA)·H2O]n (1) [H2OBA = 4,4′-oxybis(benzoic acid), L = 3,5-di(1H-benzimidazol-1-yl)pyridine] was hydrothermally synthesized and characterized through IR spectroscopy, elemental and thermal analysis and single-crystal X-ray diffraction. Complex 1 is a four-connected uni-nodal 2D net with a (44·62) topology which shows an emission centered at λ ∼393 nm upon excitation at λ = 245 nm. Moreover, complex 1 possesses high photocatalytic activities for the decomposition of Rhodamine B (RhB) under UV light irradiation.


2016 ◽  
Vol 71 (8) ◽  
pp. 909-917 ◽  
Author(s):  
Jia-Ming Li ◽  
Kun-Huan He ◽  
Zhong-Feng Shi ◽  
Hui-Yuan Gao ◽  
Yi-Min Jiang

AbstractTwo new metal-organic frameworks, namely, [Cd(L)(H2O)]n (1) and {[Cd0.5(L)(4,4′-bipy)0.5][Cd0.5(H2O)(4,4′-bipy)0.5]·H2O}n (2), where H2L = N-pyrazinesulfonyl-glycine and 4,4′-bipy = 4,4′-bipyridine, have been synthesized and characterized by single-crystal X-ray diffraction, IR spectroscopy, elemental, thermogravimetric, and photoluminescent analysis. X-ray diffraction crystallographic analyses indicate that 1 displays a distorted octahedral metal coordination in a 3-connected (4, 82) topology, while the molecular structure of 2 has a 4-connected (4, 4) topology with two perfectly octahedrally coordinated Cd centers. The L2– ligand serves as a N,N,O-tridentate, μ2-pyrazine-bridging, and μ2-carboxylate-bridging ligand in 1, and as a N,O-bidentate and μ2-carboxylate-bridging ligand in 2. In the crystal, a 3D supramolecular architecture is formed by O–H···O hydrogen bond interactions in 1, but through O–H···O as well as π···π stacking in 2. The two compounds show intense fluorescence in the solid state at room temperature.


2015 ◽  
Vol 71 (7) ◽  
pp. 618-622 ◽  
Author(s):  
Shao-Ming Ying ◽  
Jing-Jing Ru ◽  
Wu-Kui Luo

Metal–organic frameworks (MOFs) have potentially useful applications and an intriguing variety of architectures and topologies. Two homochiral coordination polymers have been synthesized by the hydrothermal method, namely poly[(μ-N-benzyl-L-phenylalaninato-κ4O,O′:O,N)(μ-formato-κ2O:O′)zinc(II)], [Zn(C16H16NO2)(HCOO)]n, (1), and poly[(μ-N-benzyl-L-leucinato-κ4O,O′:O,N)(μ-formato-κ2O:O′)zinc(II)], [Zn(C13H18NO2)(HCOO)]n, (2), and studied by single-crystal X-ray diffraction, elemental analyses, IR spectroscopy and fluorescence spectroscopy. Compounds (1) and (2) each have a two-dimensional layer structure, with the benzyl or isobutyl groups of the ligands directed towards the interlayer interface. Photoluminescence investigations show that both (1) and (2) display a strong emission in the blue region.


2018 ◽  
Vol 73 (5) ◽  
pp. 311-317
Author(s):  
Zhao Xu ◽  
Fengqin An ◽  
Xiaohui Ma ◽  
Huiliang Zhou ◽  
Weiming Song ◽  
...  

AbstractBased on 2-(4-carboxyphenyl)imidazo[4,5-f]-1,10-phenanthroline (HNCP) and 2,5-thiophenedicarboxylate (TDC2−) ligands, three new lanthanide-containing (Sm, Nd, and Pr) compounds, [Sm(NCP)(TDC)]n (1), [Nd(NCP)(TDC)]n·2n(H2O)0.5 (2), and [Pr(NCP)(TDC)]n·n(H2O)0.5 (3), have been synthesized using the hydrothermal method and structurally characterized using single-crystal X-ray diffraction. Structural analyses have revealed that compounds 1–3 are 3D isostructural metal-organic frameworks in which the [Ln2(COO)4] dimers can be regarded as 6-connecting nodes, and the TDC2− and NCP− ligands are simplified as connectors to achieve the double interspersed 3D networks with the point symbol {412·63}. Thermogravimetric analysis has illustrated that the rigid architecture contributes to superior thermal stability with a thermal decomposition temperature of more than 400°C for the resulting metal-organic frameworks.


2013 ◽  
Vol 873 ◽  
pp. 697-700 ◽  
Author(s):  
Tian Tian Li ◽  
Jun Xia

A novel metal-organic frameworks (MOFs), {[Ho (ox)1.5(H2O)3] ·CH3OH·(C2N2H6)0.5}n, has been hydrothermally synthesized and characterized by single-crystal X-ray diffraction, IR analyses, elemental analysis. The complex crystallizes in the monoclinic system with theP21/c space group. The metal ion is nine-coordinate and connected by oxalate to form 2D honeycomb-like structure.


Author(s):  
Stephen J. I. Shearan ◽  
Jannick Jacobsen ◽  
Ferdinando Costantino ◽  
Roberto D’Amato ◽  
Dmitri Novikov ◽  
...  

2020 ◽  
Vol 75 (4) ◽  
pp. 365-369
Author(s):  
Long Tang ◽  
Yu Pei Fu ◽  
Na Cui ◽  
Ji Jiang Wang ◽  
Xiang Yang Hou ◽  
...  

AbstractA new metal-organic framework, [Pb(hmpcaH)2]n (1), has been hydrothermally synthesized from Pb(OAc)2 · 3H2O and 2-hydroxy-6-methylpyridine-4-carboxylic acid (hmpcaH2; 2), and characterized by IR spectroscopy, elemental and thermogravimetric analysis, and single-crystal X-ray diffraction. In complex 1, each hmpcaH− ligand represents a three-connected node to combine with the hexacoordinated Pb(II) ions, generating a 3D binodal (3,6)-connected ant network. The crystal structure of 2 was determined. The solid-state fluorescence properties of 1 and 2 were investigated.


2021 ◽  
Author(s):  
Qing-Xia Yao ◽  
Miaomiao Tian ◽  
Jun Zheng ◽  
Jintang Xue ◽  
Xuze Pan ◽  
...  

A series of microporous Ln(III)-based metal-organic frameworks (1-Ln) have been hydrothermally synthesized by using 4,4',4''-nitrilotribenzoic acid (H3NTB). Single crystal X-ray diffraction analyses show 1-Ln are isostructural and have 3D porous...


2014 ◽  
Vol 70 (a1) ◽  
pp. C157-C157
Author(s):  
Claire Hobday ◽  
Stephen Moggach ◽  
Carole Morrison ◽  
Tina Duren ◽  
Ross Forgan

Metal-organic frameworks (MOFs) are a well-studied class of porous materials with the potential to be used in many applications such as gas storage and catalysis.[1] UiO-67 (UiO = University of Oslo), a MOF built from zirconium oxide units connected with 4,4-biphenyldicarboxylate (BDC) linkers, forms a face centred cubic structure. Zirconium has a high affinity towards oxygen ligands making these bridges very strong, resulting in UiO-based MOFs having high chemical and thermal stability compared to other MOF structures. Moreover, UiO-67 has become popular in engineering studies due to its high mechanical stability.[2] Using high pressure x-ray crystallography we can exert MOFs to GPa pressures, experimentally exploring the mechanical stability of MOFs to external pressure. By immersing the crystal in a hydrostatic medium, pressure is applied evenly to the crystal. On surrounding a porous MOF with a hydrostatic medium composed of small molecules (e.g. methanol), the medium can penetrate the MOF, resulting in medium-dependant compression. On compressing MOF-5 (Zn4O(BDC)3) using diethylformamide as a penetrating medium, the framework was shown to have an increased resistance to compression, becoming amorphous several orders of magnitude higher in pressure than observed on grinding the sample.[3] Here we present a high-pressure x-ray diffraction study on the UiO-based MOF UiO-67, and several new synthesised derivatives built from same metal node but with altered organic linkers, allowing us to study in a systematic way, the mechanical stability of the MOF, and its pressure dependence on both the linker, and pressure medium.


2021 ◽  
Vol 9 ◽  
Author(s):  
Wang Xie ◽  
Jie Wu ◽  
Xiaochun Hang ◽  
Honghai Zhang ◽  
Kang shen ◽  
...  

By employment of amino-functionalized dicarboxylate ligands to react with d10 metal ions, four novel metal-organic frameworks (MOFs) were obtained with the formula of {[Cd(BCPAB)(μ2-H2O)]}n (1), {[Cd(BDAB)]∙2H2O∙DMF}n (2), {[Zn(BDAB)(BPD)0.5(H2O)]∙2H2O}n (3) and {[Zn(BDAB)(DBPB)0.5(H2O)]∙2H2O}n (4) (H2BCPAB = 2,5-bis(p-carbonylphenyl)-1-aminobenzene; H2BDAB = 1,2-diamino-3,6-bis(4-carboxyphenyl)benzene); BPD = (4,4′-bipyridine); DBPB = (E,E-2,5-dimethoxy-1,4-bis-[2-pyridin-vinyl]-benzene; DMF = N,N-dimethylformamide). Complex 1 is a three-dimensional (3D) framework bearing seh-3,5-Pbca nets with point symbol of {4.62}{4.67.82}. Complex 2 exhibits a 4,4-connected new topology that has never been reported before with point symbol of {42.84}. Complex 3 and 4 are quite similar in structure and both have 3D supramolecular frameworks formed by 6-fold and 8-fold interpenetrated 2D coordination layers. The structures of these complexes were characterized by single crystal X-ray diffraction (SC-XRD), thermal gravimetric analysis (TGA) and powder X-ray diffraction (PXRD) measurements. In addition, the fluorescence properties and the sensing capability of 2–4 were investigated as well and the results indicated that complex 2 could function as sensor for Cu2+ and complex 3 could detect Cu2+ and Ag+via quenching effect.


Sign in / Sign up

Export Citation Format

Share Document