Mechanical Properties of GF/CF Hybrid ABS Composite by DFFIM

2017 ◽  
Vol 728 ◽  
pp. 240-245 ◽  
Author(s):  
Yuuki Hisakura ◽  
Keinichi Kitahara ◽  
Makoto Sugihara ◽  
Akihiko Imajo ◽  
Hiroyuki Hamada

The direct fiber feeding injection molding (DFFIM) process is the new fabrication technique. This technique is able to eliminate the compounding process. In this study, the composite consisting of glass fiber/carbon fiber/ABS (GF/CF/ABS) were fabricated. Tensile, bending and Izod impact test were conducted to compare mechanical properties between glass fiber and glass fiber/carbon fiber hybrid composites. The additional of carbon fiber improved tensile, bending and impact properties of the hybrid composites. SEM photographs indicated that carbon fiber tended to agglomerate during DFFIM process. It can be noted that the low content of carbon fiber was suitable for enhanced mechanical performances of GF/CF/ABS hybrid composites.

2018 ◽  
Vol 38 (6) ◽  
pp. 513-523 ◽  
Author(s):  
Wiranphat Thodsaratpreeyakul ◽  
Putinun Uawongsuwan ◽  
Akio Kataoka ◽  
Takanori Negoro ◽  
Hiroyuki Hamada

Abstract Improving the applicability of polyethylene terephthalate (PET) by carbon fiber/glass fiber reinforcement is of great interest. Glass fiber (GF)/carbon fiber (CF)/PET hybrid composites were fabricated by direct fiber feeding injection molding (DFFIM) process. The aim of DFFIM is to obtain longer fibers in composites in order to improve their mechanical properties. In this study, the mechanical properties of GF/PET composites fabricated by conventional injection molding and hybrid GF/CF/PET composites fabricated by DFFIM process were investigated. The influence of GF and CF volume fractions on fiber distribution, fiber orientation, and fiber length is discussed. Fiber distribution status was quantitatively measured by the fiber distribution index. Fiber agglomeration problem was observed by scanning electron microscopy. The results indicate that incorporating CF in GF/CF/PET hybrid composites by the DFFIM process greatly enhances mechanical performance even when only a small amount of CF is added. Too high GF content leads to less effective CF hybridization because it causes poor fiber distribution and poor fiber orientation and intensifies fiber attrition. The ideal volume fractions of GF and CF for fabricating GF/CF/PET hybrid composites by using DFFIM are provided.


2019 ◽  
Vol 61 (11) ◽  
pp. 1095-1100 ◽  
Author(s):  
Sivakumar Dhar Malingam ◽  
Kathiravan Subramaniam ◽  
Ng Lin Feng ◽  
Siti Hajar Sheikh MD Fadzullah ◽  
Sivaraos Subramonian

2010 ◽  
Vol 442 ◽  
pp. 52-58
Author(s):  
M.A. Bashir ◽  
H. Ahmad ◽  
R. Ahmed ◽  
R.A. Alvi ◽  
Mohammad Bilal Khan

Ablative composites are heat shielding, protective materials that are being used in aerospace industry to protect inner hardware and sensitive devices. The aero dynamic vehicles have to face high stresses, ultra high temperature and adverse conditions of air friction. It is required to develop the materials with light weight and high modulus. EPDM, being heat and ozone attack resistant is the best candidate for the preparation of ablative composites by introducing different heat sinks such as silica, glass fiber, carbon fiber, asbestos, carbon and their combinations have been studied in this work. The prepared materials were tested and it was found that visco elastic behavior of the composites affected by the addition of reinforcing filler (carbon, silica), semi-reinforcing filler (carbon fiber, glass fiber) and non-reinforcing filler (asbestos powder). Mechanical properties tested at different rates, revealed the improvement in tensile strength and % elongation in case of reinforcing and semi-reinforcing fillers but showed adverse effect in case of non-reinforcing fillers. Rheological investigations of these novel composites shows that moony viscosity of the materials containing glass fiber, carbon fiber, silica decreases in the order glass fiber > carbon fiber > silica.


BioResources ◽  
2015 ◽  
Vol 11 (1) ◽  
Author(s):  
Djamila Kada ◽  
Sébastien Migneault ◽  
Ghezalla Tabak ◽  
Ahmed Koubaa

2017 ◽  
Vol 2 (3) ◽  
pp. 226-231
Author(s):  
Basim M. Fadhil ◽  
Payman Sahbah Ahmed ◽  
Ava Ali Kamal

Impact characteristics of Epoxy matrix composites is investigated by impact machine. Four different types of reinforcement are used in the experimental works: type one: 1.9wt% steel fiber, 1.9wt% carbon fiber,1.9 wt% carbon nanotube, 1.9 wt% woven carbon fiber.This work shows that reinforcing epoxy with (1.9 wt% of woven carbon fiber) improves the impact properties where energy, force and deformation values of impact test for this composite were 18.4J, 3580.59 N and 18 mm respectively while for epoxy were 2.927 J, 921.849 N and 18.413 mm respectively.


Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1501 ◽  
Author(s):  
Soundhar Arumugam ◽  
Jayakrishna Kandasamy ◽  
Ain Umaira Md Shah ◽  
Mohamed Thariq Hameed Sultan ◽  
Syafiqah Nur Azrie Safri ◽  
...  

This study aims to explore the mechanical properties of hybrid glass fiber (GF)/sisal fiber (SF)/chitosan (CTS) composite material for orthopedic long bone plate applications. The GF/SF/CTS hybrid composite possesses a unique sandwich structure and comprises GF/CTS/epoxy as the external layers and SF/CTS/epoxy as the inner layers. The composite plate resembles the human bone structure (spongy internal cancellous matrix and rigid external cortical). The mechanical properties of the prepared hybrid sandwich composites samples were evaluated using tensile, flexural, micro hardness, and compression tests. The scanning electron microscopic (SEM) images were studied to analyze the failure mechanism of these composite samples. Besides, contact angle (CA) and water absorption tests were conducted using the sessile drop method to examine the wettability properties of the SF/CTS/epoxy and GF/SF/CTS/epoxy composites. Additionally, the porosity of the GF/SF/CTS composite scaffold samples were determined by using the ethanol infiltration method. The mechanical test results show that the GF/SF/CTS hybrid composites exhibit the bending strength of 343 MPa, ultimate tensile strength of 146 MPa, and compressive strength of 380 MPa with higher Young’s modulus in the bending tests (21.56 GPa) compared to the tensile (6646 MPa) and compressive modulus (2046 MPa). Wettability study results reveal that the GF/SF/CTS composite scaffolds were hydrophobic (CA = 92.41° ± 1.71°) with less water absorption of 3.436% compared to the SF/CTS composites (6.953%). The SF/CTS composites show a hydrophilic character (CA = 54.28° ± 3.06°). The experimental tests prove that the GF/SF/CTS hybrid composite can be used for orthopedic bone fracture plate applications in future.


Sign in / Sign up

Export Citation Format

Share Document