Effect of Heat Sinks on Visco-Elastic & Mechanical Properties of EPDM Based Ablative Composites

2010 ◽  
Vol 442 ◽  
pp. 52-58
Author(s):  
M.A. Bashir ◽  
H. Ahmad ◽  
R. Ahmed ◽  
R.A. Alvi ◽  
Mohammad Bilal Khan

Ablative composites are heat shielding, protective materials that are being used in aerospace industry to protect inner hardware and sensitive devices. The aero dynamic vehicles have to face high stresses, ultra high temperature and adverse conditions of air friction. It is required to develop the materials with light weight and high modulus. EPDM, being heat and ozone attack resistant is the best candidate for the preparation of ablative composites by introducing different heat sinks such as silica, glass fiber, carbon fiber, asbestos, carbon and their combinations have been studied in this work. The prepared materials were tested and it was found that visco elastic behavior of the composites affected by the addition of reinforcing filler (carbon, silica), semi-reinforcing filler (carbon fiber, glass fiber) and non-reinforcing filler (asbestos powder). Mechanical properties tested at different rates, revealed the improvement in tensile strength and % elongation in case of reinforcing and semi-reinforcing fillers but showed adverse effect in case of non-reinforcing fillers. Rheological investigations of these novel composites shows that moony viscosity of the materials containing glass fiber, carbon fiber, silica decreases in the order glass fiber > carbon fiber > silica.

2003 ◽  
Vol 778 ◽  
Author(s):  
Rajdip Bandyopadhyaya ◽  
Weizhi Rong ◽  
Yong J. Suh ◽  
Sheldon K. Friedlander

AbstractCarbon black in the form of nanoparticle chains is used as a reinforcing filler in elastomers. However, the dynamics of the filler particles under tension and their role in the improvement of the mechanical properties of rubber are not well understood. We have studied experimentally the dynamics of isolated nanoparticle chain aggregates (NCAs) of carbon made by laser ablation, and also that of carbon black embedded in a polymer film. In situ studies of stretching and contraction of such chains in the transmission electron microscope (TEM) were conducted under different maximum values of strain. Stretching causes initially folded NCA to reorganize into a straight, taut configuration. Further stretching leads to either plastic deformation and breakage (at 37.4% strain) or to a partial elastic behavior of the chain at small strains (e.g. 2.3% strain). For all cases the chains were very flexible under tension. Similar reorientation and stretching was observed for carbon black chains embedded in a polymer film. Such flexible and elastic nature of NCAs point towards a possible mechanism of reinforcement of rubber by carbon black fillers.


2021 ◽  
pp. 073168442110176
Author(s):  
Oluwole I Oladele ◽  
Baraka A Makinde-Isola ◽  
Adeolu A Adediran ◽  
Oluwaseun T Ayanleye ◽  
Samuel A Taiwo

The demand for durable and sustainable eco-friendly materials in recent times has caused many researchers to consider the use of plant fibers in composite development. In this research, the suitability of treated pawpaw fiber as a substitute for glass fiber was considered. The pawpaw fiber was extracted from the plant stem by dew retting and treated before been incorporated into the epoxy matrix. Two distinct fiber structures in linear and network forms were identified, separated, and used for the development of the composites. The composites were produced by incorporating a fixed amount of pawpaw fiber with a varied amount of glass fiber within 3–15 wt% in epoxy-based polymer matrix after which mechanical and biodegradation tests were carried out on the developed samples. Fractured surface morphology was also observed using a scanning electron microscope. The results revealed that the fiber structures influence the properties of the material. While mechanical properties were mostly enhanced by treated linear structure pawpaw fiber, biodegradation was highly promoted by treated network structure pawpaw fiber. Tensile (except for strain), hardness, and flexural properties were enhanced by the linear-structured treated pawpaw fiber, while biodegradability, impact, and tensile strain were improved by the network-structured treated pawpaw fiber compared to the control sample.


2018 ◽  
Vol 130 ◽  
pp. 458-466 ◽  
Author(s):  
Jamal Seyyed Monfared Zanjani ◽  
Abdulrahman Saeed Al-Nadhari ◽  
Mehmet Yildiz

2015 ◽  
Vol 787 ◽  
pp. 534-537
Author(s):  
B. Adaveesh ◽  
K.C. Anil ◽  
M. Vishwas ◽  
R.P. Archana

In this investigation, conventional hand layup method was employed to fabricate hybrid epoxy laminate composite. Jute fiber, E-glass fiber and carbon fiber fabrics of 500,200,200 gsm respectively were used as a reinforcements and epoxy with k-6 hardener was used as a matrix material. Tensile, compression and flexural tests were conducted as per the ASTM standards. It is observed that jute/carbon/epoxy laminate of 2mm thickness plate exhibits significant mechanical properties compare to jute/glass/epoxy laminate of 2mm laminate composite.


2020 ◽  
Vol 4 (1) ◽  
pp. 5
Author(s):  
Nhan Thi Thanh Nguyen ◽  
Obunai Kiyotaka ◽  
Okubo Kazuya ◽  
Fujii Toru ◽  
Shibata Ou ◽  
...  

In this research, three kinds of carbon fiber (CF) with lengths of 1, 3, and 25 mm were prepared for processing composite. The effect of submicron glass fiber addition (sGF) on mechanical properties of composites with different CF lengths was investigated and compared throughout static tests (i.e., bending, tensile, and impact), as well as the tension-tension fatigue test. The strengths of composites increased with the increase of CF length. However, there was a significant improvement when the fiber length changed from 1 to 3 mm. The mechanical performance of 3 and 25 mm was almost the same when having an equal volume fraction, except for the impact resistance. Comparing the static strengths when varying the sGF content, an improvement of bending strength was confirmed when sGF was added into 1 mm composite due to toughened matrix. However, when longer fiber was used and fiber concentration was high, mechanical properties of composite were almost dependent on the CF. Therefore, the modification effect of matrix due to sGF addition disappeared. In contrast to the static strengths, the fatigue durability of composites increased proportionally to the content of glass fiber in the matrix, regardless to CF length.


2014 ◽  
Vol 896 ◽  
pp. 574-577 ◽  
Author(s):  
Miftahul Anwar ◽  
Indro Cahyono Sukmaji ◽  
Wisnu R. Wijang ◽  
Kuncoro Diharjo

In the present work, we study how to improve mechanical properties of carbon fiber reinforced plastics (CFRP) in order to increase crashworthiness probability. Experimentally, hybrid carbon /glass fiber composite was made in order to get higher mechanical properties. As a results, with increasing carbon fiber volume fraction (% vol.), tensile strength and flexural strength of the composite are increased. Simulation of impact testing is also performed using data properties taken from the experiment with variation of impact forces on front bumper structure. By varying external load to the bumper, the result shows that higher thickness of hybrid carbon/glass fiber composite has always smaller stress values than thinner one. On the other hand, the displacement of hybrid carbon/glass car bumper increases linearly with increasing external load.


Sign in / Sign up

Export Citation Format

Share Document