Influence of Support Structure on the Ultraviolet Photoluminescence Enhancement from Graphene/ZnO Hybrid Structures

2017 ◽  
Vol 748 ◽  
pp. 132-136
Author(s):  
Pei Chao Zhang ◽  
Ying Hui Zhou

Novel application of graphene combined with light emitting materials has been proposed recently due to the plasmonic effects of graphene. Here, we report our investigations on the structural and optical properties of two graphene/ZnO hybrid structures that fabricated based on different ZnO supports. Plasmon-enhanced ultraviolet photoluminescence has been observed from both samples. The combined Raman and photoluminescence studies suggest a strong interaction between ZnO and graphene, which is affected by the surface structures of ZnO. Our results develop insights about the influence of ZnO supports on the PL enhancement and interfacial coupling in graphene/ZnO hybrid structures, which provides a reference for the design and fabrication of optoelectronic devices with high efficiency.

2018 ◽  
Vol 112 (5) ◽  
pp. 052105 ◽  
Author(s):  
Guijuan Zhao ◽  
Lianshan Wang ◽  
Huijie Li ◽  
Yulin Meng ◽  
Fangzheng Li ◽  
...  

Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2110
Author(s):  
Olga Yu. Koval ◽  
Vladimir V. Fedorov ◽  
Alexey D. Bolshakov ◽  
Sergey V. Fedina ◽  
Fedor M. Kochetkov ◽  
...  

Controlled growth of heterostructured nanowires and mechanisms of their formation have been actively studied during the last decades due to perspectives of their implementation. Here, we report on the self-catalyzed growth of axially heterostructured GaPN/GaP nanowires on Si(111) by plasma-assisted molecular beam epitaxy. Nanowire composition and structural properties were examined by means of Raman microspectroscopy and transmission electron microscopy. To study the optical properties of the synthesized nanoheterostructures, the nanowire array was embedded into the silicone rubber membrane and further released from the growth substrate. The reported approach allows us to study the nanowire optical properties avoiding the response from the parasitically grown island layer. Photoluminescence and Raman studies reveal different nitrogen content in nanowires and parasitic island layer. The effect is discussed in terms of the difference in vapor solid and vapor liquid solid growth mechanisms. Photoluminescence studies at low temperature (5K) demonstrate the transition to the quasi-direct gap in the nanowires typical for diluted nitrides with low N-content. The bright room temperature photoluminescent response demonstrates the potential application of nanowire/polymer matrix in flexible optoelectronic devices.


Sign in / Sign up

Export Citation Format

Share Document