Application of Lithofacies Modeling for Evaluating the Effectiveness of Enhanced Oil Recovery in the Fainsk Oil Field

2018 ◽  
Vol 785 ◽  
pp. 70-76
Author(s):  
Vadim Aleksandrov ◽  
Marsel Kadyrov ◽  
Andrey Ponomarev ◽  
Denis Drugov ◽  
Olga Veduta

A lithofacies model of the Fainsk oil field YUS11 formation was built. The results of interventions for oil production stimulation and enhanced oil recovery depending on the section penetrated by wells were considered. Criteria for selection of various types of interventions in particular geophysical conditions were given, and recommendations on the selection of technologies for bottomhole zone processing (BZP) and enhanced oil recovery (EOR) were made. The research objective is to evaluate the effectiveness of interventions in terms of enhanced oil recovery, adapted to the specific features of the field geologic structure aspects. Through the use of sedimentary deposits facies analysis method, a lithofacies model of the Fainsk oil field YUS11 formation was constructed. The application of field-geologic analysis gave an option to evaluate the technological effectiveness of interventions for oil production stimulation and enhanced oil recovery depending on the reservoir units genesis penetrated by wells.

2020 ◽  
Author(s):  
Aleksandr Tarasovich Litvin ◽  
Aleksey Alekseyevich Terentiyev ◽  
Denis Anatolevich Gornov ◽  
Vladimir Nikolaevich Kozhin ◽  
Konstantin Vasiliyevich Pchela ◽  
...  

Author(s):  
S. Mahdia Motahhari ◽  
Mehdi Rafizadeh ◽  
S. Mahmoud Reza Pishvaie ◽  
Mohammad Ahmadi

Pilot-scale enhanced oil recovery in hydrocarbon field development is often implemented to reduce investment risk due to geological uncertainties. Selection of the pilot area is important, since the result will be extended to the full field. The main challenge in choosing a pilot region is the absence of a systematic and quantitative method. In this paper, we present a novel quantitative and systematic method composed of reservoir-geology and operational-economic criteria where a cluster analysis is utilized as an unsupervised machine learning method. A field of study will be subdivided into pilot candidate areas, and the optimized pilot size is calculated using the economic objective function. Subsequently, the corresponding Covariance (COV) matrix is computed for the simulated 3-D reservoir quality maps in the areas. The areas are optimally clustered to select the dominant cluster. The operational-economic criteria could be applied for decision making as well as the proximity of each area to the center of dominant cluster as a geological-reservoir criterion. Ultimately, the Shannon entropy weighting and the reference ideal method are applied to compute the pilot opportunity index in each area. The proposed method was employed for a pilot study on an oil field in south west Iran.


2002 ◽  
Vol 5 (01) ◽  
pp. 33-41 ◽  
Author(s):  
L.R. Brown ◽  
A.A. Vadie ◽  
J.O. Stephens

Summary This project demonstrated the effectiveness of a microbial permeability profile modification (MPPM) technology for enhancing oil recovery by adding nitrogenous and phosphorus-containing nutrients to the injection water of a conventional waterflooding operation. The MPPM technology extended the economic life of the field by 60 to 137 months, with an expected recovery of 63 600 to 95 400 m3 (400,000 to 600,000 bbl) of additional oil. Chemical changes in the composition of the produced fluids proved the presence of oil from unswept areas of the reservoir. Proof of microbial involvement was shown by increased numbers of microbes in cores of wells drilled within the field 22 months after nutrient injection began. Introduction The target for enhanced oil recovery processes is the tremendous quantity of unrecoverable oil in known deposits. Roughly two thirds [approximately 55.6×109 m3 (350 billion bbl)] of all of the oil discovered in the U.S. is economically unrecoverable with current technology. Because the microbial enhanced oil recovery (MEOR) technology in this report differs in several ways from other MEOR technologies, it is important that these differences be delineated clearly. In the first place, the present project is designed to enhance oil recovery from an entire oil reservoir, rather than treat single wells. Even more important is the fact that this technology relies on the action of the in-situ microflora, not microorganisms injected into the reservoir. It is important to note that MPPM technology does not interfere with the normal waterflood operation and is environmentally friendly in that neither microorganisms nor hazardous chemicals are introduced into the environment. Description of the Oil Reservoir. The North Blowhorn Creek Oil Unit (NBCU) is located in Lamar County, Alabama, approximately 75 miles west of Birmingham. This field is in what is known geologically as the Black Warrior basin. The producing formation is the Carter sandstone of Mississippian Age at a depth of approximately 700 m (2,300 ft). The Carter reservoir is a northwest/ southeast trending deltaic sand body, approximately 5 km (3 miles) long and 1 to 1.7 km (1/2 to 1 mile) wide. Sand thickness varies from only 1 m up to approximately 12 m (40 ft). The sand is relatively clean (greater than 90% quartz), with no swelling clays. The field was discovered in 1979 and initially developed on 80-acre spacing. Waterflooding of the reservoir began in 1983. The initial oil in place in the reservoir was approximately 2.54×106 m3 (16 million bbl), of which 874 430 m3 (5.5 million bbl) had been recovered by the end of 1995. To date, North Blowhorn Creek is the largest oil field discovered in the Black Warrior basin. Oil production peaked at almost 475 m3/d (3,000 BOPD) in 1985 and has since declined steadily. Currently, there are 20 injection wells and 32 producing wells. Oil production at the outset of the field demonstration was approximately 46 m3/d oil (290 BOPD), 1700 m3/d gas (60 MCFD), and 493 m3/d water (3,100 BWPD), with a water-injection rate of approximately 660 m3/d (4,150 BWPD). Projections at the beginning of the project were that approximately 1.59×106 m3 oil (10 million bbl of oil) would be left unrecovered if some new method of enhanced recovery were not effective. Prefield Trial Studies The concepts of the technology described in this paper had been proven to be effective in laboratory coreflood experiments.1,2 However, it seemed advisable to conduct coreflood experiments with cores from the reservoir being used in the field demonstration. Toward this end, two wells were drilled, and cores were obtained from one for the laboratory coreflood experiments to determine the schedule and amounts of nutrients to be employed in the field trial.3


2020 ◽  
Author(s):  
Aleksandr Tarasovich Litvin ◽  
Aleksey Alekseyevich Terentiyev ◽  
Denis Anatolevich Gornov ◽  
Vladimir Nikolaevich Kozhin ◽  
Konstantin Vasiliyevich Pchela ◽  
...  

2020 ◽  
pp. 120-127
Author(s):  
E. N. Skvortsova ◽  
O. P. Deryugina

The article discusses the results of a study on the selection of wax inhibitors that can be used at the Kondinskoye oil field during transportation and dehydration of the emulsion.Asphaltene precipitation is one of the most serious issues in oil production. The experiment was conducted in order to select the most effective wax inhibitors. We have carried out laboratory tests to choose the most effective wax inhibitor in the conditions of oil production, collection, preparation and external transport systems at the Kondinskoye oil field. Based on the data obtained, wax inhibitor-2, wax inhibitor-4, and wax inhibitor-6 have shown the best results in ensuring the efficiency of inhibition, which should be at least 70 %, and, therefore, they can be allowed to pilot tests. The recommended initial dosage of inhibitors according to the results obtained during pilot tests should be at least 500 g/t of oil.


2021 ◽  
Author(s):  
Tinuola Udoh

Abstract In this paper, the enhanced oil recovery potential of the application of nanoparticles in Niger Delta water-wet reservoir rock was investigated. Core flooding experiments were conducted on the sandstone core samples at 25 °C with the applications of nanoparticles in secondary and tertiary injection modes. The oil production during flooding was used to evaluate the enhanced oil recovery potential of the nanoparticles in the reservoir rock. The results of the study showed that the application of nanoparticles in tertiary mode after the secondary formation brine flooding increased oil production by 16.19% OIIP. Also, a comparison between the oil recoveries from secondary formation brine and nanoparticles flooding showed that higher oil recovery of 81% OIIP was made with secondary nanoparticles flooding against 57% OIIP made with formation brine flooding. Finally, better oil recovery of 7.67% OIIP was achieved with secondary application of nanoparticles relative to the tertiary application of formation brine and nanoparticles flooding. The results of this study are significant for the design of the application of nanoparticles in Niger Delta reservoirs.


2021 ◽  
pp. 79-90
Author(s):  
Т. A. Pospelova

The article discusses ways to increase the oil recovery factor in already developed fields, special attention is paid to the methods of enhanced oil recovery. The comparative structure of oil production in Russia in the medium term is given. The experience of oil and gas companies in the application of enhanced oil recovery in the fields is analyzed and the dynamics of the growth in the use of various enhanced oil recovery in Russia is estimated. With an increase in the number of operations in the fields, the requirements for the selection of candidates inevitably increase, therefore, the work focuses on hydrodynamic modeling of physical and chemical modeling, highlights the features and disadvantages of existing simulators. The main dependences for adequate modeling during polymer flooding are given. The calculation with different concentration of polymer solution is presented, which significantly affects the water cut and further reduction of operating costs for the preparation of the produced fluid. The possibility of creating a specialized hydrodynamic simulator for low-volume chemical enhanced oil recovery is considered, since mainly simulators are applicable for chemical waterflooding and the impact is on the formation as a whole.


Sign in / Sign up

Export Citation Format

Share Document