Development and Validation of Multiscale Thermo-Elasto-Viscoplastic Analysis Method for Plain-Woven Composites

2019 ◽  
Vol 794 ◽  
pp. 78-88
Author(s):  
Gai Kubo ◽  
Tetsuya Matsuda ◽  
Hiroma Nagaoka ◽  
Yoshihiko Sato

In this study, the analysis method for thermomechanical properties of plain-woven composites is developed, and applied to thermoelastoviscoplastic analysis of plain-woven glass fiber-reinforced plastic (GFRP) composites. For this, a time-dependent constitutive equation depending on temperature for matrix materials is incorporated into the micro/meso/macro-scale thermo-elastic homogenization method for plain-woven composites developed by our research group. This method enables us to analyze thermoelastoviscoplastic properties in not only fiber bundles but also fibers and matrix materials in fiber bundles, as well as macroscopic thermal properties. This method is then applied to the thermal expansion analysis of a plain-woven GFRP composite subjected to a macroscopic temperature change from 25°C to 80°C before it is cooled to 25°C. Comparing the analysis results with experimental data, we validate the present method. It is also shown that the present method can evaluate themal residual stress and strain in the composite.

2014 ◽  
Vol 626 ◽  
pp. 365-371 ◽  
Author(s):  
Kohei Oide ◽  
Tetsuya Matsuda

In this study, macro/meso/micro elastic-viscoplastic analysis of plain-woven laminates is conducted based on a homogenization theory for nonlinear time-dependent composites. For this, a plain-woven laminate is modeled with respect to three scales by considering the laminate as a macrostructure, fiber bundles (yarns) and a matrix in the laminate as a mesostructure, and fibers and a matrix in the yarns as a microstructure. Then, an elastic-viscoplastic constitutive equation of the laminate is derived by dually applying the homogenization theory for nonlinear time-dependent composites to not only the meso/micro but also the macro/meso scales. Using the present method, the elastic-viscoplastic analysis of a plain-woven glass fiber/epoxy laminate subjected to on-and off-axis loading is performed. It is shown that the present method successfully takes into account the effects of viscoplasticity of the epoxy in yarns on the elastic-viscoplastic behavior of the plain-woven GFRP laminate. It is also shown that the results of analysis are in good agreement with experimental data.


2015 ◽  
Vol 766-767 ◽  
pp. 44-49
Author(s):  
G. Ramya Devi ◽  
K. Palanikumar

The desire of weight reduction and improved damage tolerance characteristics of the aircraft structures throws a light on the development on Fiber Metal Laminates (FML), one of the hybrid composites, with the combination of metallic and non-metallic layers. In this study, laminates of alternating layers of aluminium (metal) and glass fibers with Woven Roving mat is fabricated. Tensile test based on ASTM standard are then conducted on the laminates to study their yield properties. The interfacial bonding between the layers are analyzed using the Scanning Electron Microscopy of tested specimens.


2007 ◽  
Vol 561-565 ◽  
pp. 743-746
Author(s):  
Yoshimasa Takayama ◽  
T. Abe ◽  
T. Yashiro ◽  
Hideo Watanabe ◽  
Hajime Kato

The composite accompanied with a function of thermoelectric conversion has been fabricated. It was a fiber metal laminate (FML) consisting of two aluminum alloy sheets of 0.5mm thickness and a central layer of glass fiber reinforced plastic (GFRP). The central layer with a thickness of 1mm included thermoelectric elements of Bi-Te based alloys between glass fibers. The mechanical properties of FML with and without the thermoelectric elements were evaluated by tensile and bending test. The thermomechanical properties were measured by a potentiometer for a module with heated and cooled sides, and plotted a potential as a function of difference in temperature between both sides.


2016 ◽  
Vol 725 ◽  
pp. 439-444 ◽  
Author(s):  
Yoshihiko Sato ◽  
Tetsuya Matsuda

In this study, thermal properties of plain-woven laminates are analyzed micro-, meso-and macroscopically based on a multiscale approach. For this, the effects of thermal expansion of constituents are incorporated into the micro/meso/macro homogenization method for plain-woven laminates developed by our research group. This method enables us to analyze thermal properties of not only fiber bundles in laminates but also fibers and matrix materials in fiber bundles, in addition to their macroscopic thermal properties. The present method is then applied to the thermal property analysis of plain-woven carbon fiber/epoxy laminates subjected to a macroscopic temperature change from 180°C to 20°C. Two types of carbon fibers, i.e. HTA and P75, are considered in the analysis. It is shown that quite high thermal residual stress can occur in fiber bundles, fibers and a matrix. It is also shown that the present method can predict the change of thermal properties of the laminates depending on the difference of fibers.


2020 ◽  
pp. 152808372097134
Author(s):  
Sherif M Youssef ◽  
M Megahed ◽  
Soliman S Ali-Eldin ◽  
MA Agwa

Vacuum resin infusion (VRI) is a promising technique for manufacturing complicated structural laminates. This high viscosity of nanofilled resin increases the filling time and leads to an incomplete mold filling. The mold filling time can be reduced either by making the fiber dimensions smaller than the mold (gaps around the fibers) or by adding ethanol to nanofilled epoxy. However, ethanol addition influences the mechanical properties of composite laminates. In this study, different amounts of ethanol (0.5 wt. % and 1 wt. %) were used as a diluent to both neat epoxy and epoxy filled with (0.25 wt. %) of titanium dioxide (TiO2) nanoparticles. From results, it was found that ethanol addition saves the time for neat and nanofilled epoxy by 47.1% and 24.1%, respectively. It was found that adding 0.5 wt. % of ethanol to 0.25wt. % of TiO2 nanoparticles (GT0.25E0.5) enhances the tensile and flexural strength by 30.8% and 55.9%, respectively compared with neat specimens. Furthermore, the tensile and flexural moduli increased by 62% and 72.3%, respectively. Furthermore, the mold filling time was investigated experimentally and validated numerically using ANSYS FLUENT software. The mold filling time prediction using ANSYS FLUENT can be used to avoid resin gelation before the incomplete mold filling and thus can be considered a cost-effective methodology. The results showed that the gaps around the fibers reduce the time by 178% without affecting the mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document