The Preparation of TiC/TiN Composites by Selective Laser Melting

2019 ◽  
Vol 799 ◽  
pp. 165-170
Author(s):  
Le Liu ◽  
Tatevik Minasyan ◽  
Sofiya Aydinyan ◽  
Irina Hussainova

The concept of manufacturing of near-net-shaped three-dimensional ceramic-based parts with the required geometry is motivated by design and development of advanced ceramics for high-performance applications. It is an incontestable fact, that additive manufacturing (AM), as an intensively developing smart technology, owns a unique position in modern-day product development, proposing new waste-less, cost effective and environmentally friendly pathways for manufacturing of arbitrary geometries. This work takes a new step for the synthesis of TiC/TiN lattice with geometrically defined porosity by three stage strategy (i) preparation of a TiC/Ti composite by energy saving self-propagating high-temperature synthesis (SHS) technique. (ii) preparation of designed 3D TiC/Ti shape by selective laser melting (SLM); (iii) nitridation of the consolidated samples in nitrogen environment. The influence of synthesis and nitridation conditions on the characteristics of both the powder and produced parts was investigated; set of parameters has been adjusted and optimized. Phase composition and microstructure features were examined after each procedure to reveal the physicochemical transformations and morphology evolution of the composites.

2020 ◽  
Vol 10 (9) ◽  
pp. 3283
Author(s):  
Le Liu ◽  
Sofiya Aydinyan ◽  
Tatevik Minasyan ◽  
Irina Hussainova

One of the main limitations for widespread additive manufacturing is availability and processability of the precursor materials feedstock. For the first time, this study reports the development of a “pomegranate-like” structured TiB2-Si ceramic-metalloid powder feedstock suitable for selective laser melting (SLM) of ceramic-based composite. The powder was produced via self-propagating high temperature synthesis (SHS) at a moderate combustion temperature of 1530 °C. The effective activation energy in the Ti-B-Si system for the slow step of the combustion process was estimated as 184 kJ. Conditions of SHS process demonstrated a strong influence on the properties of produced powders and, therefore, on SLM parameters and properties of the printed materials. The powders have demonstrated a high performance for manufacturing bulks of 56 wt%TiB2–44 wt%Si ceramic-based composite.


2020 ◽  
Vol 264 ◽  
pp. 127377 ◽  
Author(s):  
Zhenlu Zhou ◽  
Zhen Tan ◽  
Dingyong He ◽  
Zheng Zhou ◽  
Li Cui ◽  
...  

Author(s):  
Francesco Balduzzi ◽  
Alessandro Bianchini ◽  
Giovanni Ferrara ◽  
David Marten ◽  
George Pechlivanoglou ◽  
...  

Due to the rapid progress in high-performance computing and the availability of increasingly large computational resources, Navier-Stokes computational fluid dynamics (CFD) now offers a cost-effective, versatile and accurate means to improve the understanding of the unsteady aerodynamics of Darrieus wind turbines and deliver more efficient designs. In particular, the possibility of determining a fully resolved flow field past the blades by means of CFD offers the opportunity to both further understand the physics underlying the turbine fluid dynamics and to use this knowledge to validate lower-order models, which can have a wider diffusion in the wind energy sector, particularly for industrial use, in the light of their lower computational burden. In this context, highly spatially and temporally refined time-dependent three-dimensional Navier-Stokes simulations were carried out using more than 16,000 processor cores per simulation on an IBM BG/Q cluster in order to investigate thoroughly the three-dimensional unsteady aerodynamics of a single blade in Darrieus-like motion. Particular attention was payed to tip losses, dynamic stall, and blade/wake interaction. CFD results are compared with those obtained with an open-source code based on the Lifting Line Free Vortex Wake Model (LLFVW). At present, this approach is the most refined method among the “lower-fidelity” models and, as the wake is explicitly resolved in contrast to BEM-based methods, LLFVW analyses provide three-dimensional flow solutions. Extended comparisons between the two approaches are presented and a critical analysis is carried out to identify the benefits and drawbacks of the two approaches.


Author(s):  
Francesco Balduzzi ◽  
David Marten ◽  
Alessandro Bianchini ◽  
Jernej Drofelnik ◽  
Lorenzo Ferrari ◽  
...  

Due to the rapid progress in high-performance computing and the availability of increasingly large computational resources, Navier–Stokes (NS) computational fluid dynamics (CFD) now offers a cost-effective, versatile, and accurate means to improve the understanding of the unsteady aerodynamics of Darrieus wind turbines and deliver more efficient designs. In particular, the possibility of determining a fully resolved flow field past the blades by means of CFD offers the opportunity to both further understand the physics underlying the turbine fluid dynamics and to use this knowledge to validate lower-order models, which can have a wider diffusion in the wind energy sector, particularly for industrial use, in the light of their lower computational burden. In this context, highly spatially and temporally refined time-dependent three-dimensional (3D) NS simulations were carried out using more than 16,000 processor cores per simulation on an IBM BG/Q cluster in order to investigate thoroughly the 3D unsteady aerodynamics of a single blade in Darrieus-like motion. Particular attention was paid to tip losses, dynamic stall, and blade/wake interaction. CFD results are compared with those obtained with an open-source code based on the lifting line free vortex wake model (LLFVW). At present, this approach is the most refined method among the “lower-fidelity” models, and as the wake is explicitly resolved in contrast to blade element momentum (BEM)-based methods, LLFVW analyses provide 3D flow solutions. Extended comparisons between the two approaches are presented and a critical analysis is carried out to identify the benefits and drawbacks of the two approaches.


Author(s):  
Bilal Hussain ◽  
A. Sherif El-Gizawy

Selective Laser Melting (SLM) is one of the important Additive Manufacturing techniques for building functional products. Nevertheless, the absence of accurate models for predicting the SLM process behavior, delays development of cost effective and defects free process. This work presents a coupled thermo-mechanical numerical model to capture the two phase (solid-liquid) solidification melting phenomena that occur in the process. The proposed model will also predict the evolvement of process-induced properties and defects particularly residual stresses caused by temperature gradient and thermal stresses. CO2 or Nd:YAG laser beam can be used as a heat source with a Gaussian distribution for the laser beam energy.


2006 ◽  
Vol 61 (7) ◽  
pp. 792-798 ◽  
Author(s):  
Klaus Müller-Buschbaum

The reaction of a melt of unsubstituted imidazole with praseodymium metal yields bright green crystals of 3D-[Pr(Im)3(ImH)]@ImH. Imidazolate ligands coordinate η1 via both N atoms their 1,3 positioning within the heterocycle being responsible for the connection of praseodymium atoms. A 3-dimensional network is formed with imidazole molecules from the melt intercalated in the crystal structure. The imidazole molecules can be released and temperature dependent reversibly be exchanged with gas molecules including argon. Thus the solvent free high temperature synthesis of rare earth elements with amine melts can also be utilized for “crystal engineering” and the synthesis of compounds with material science aspects. Furthermore 3D-[Pr(Im)3(ImH)]@ImH is the first unsubstituted imidazolate of the lanthanides.


2015 ◽  
Vol 60 (2) ◽  
pp. 1065-1070 ◽  
Author(s):  
L.A. Dobrzański ◽  
A.D. Dobrzańska-Danikiewicz ◽  
P. Malara ◽  
T.G. Gaweł ◽  
L.B. Dobrzański ◽  
...  

AbstractThe aim of the research, the results of which are presented in the paper, is to fabricate, by Selective Laser Melting (SLM), a metallic scaffold with Ti6Al4V powder based on a virtual model corresponding to the actual loss of a patient’s craniofacial bone. A plaster cast was made for a patient with a palate recess, and the cast was then scanned with a 3D scanner to create a virtual 3D model of a palate recess, according to which a 3D model of a solid implant was created using specialist software. The virtual 3D solid implant model was converted into a 3D porous implant model after designing an individual shape of the unit cell conditioning the size and three-dimensional shape of the scaffold pores by multiplication of unit cells. The data concerning a virtual 3D porous implant model was transferred into a selective laser melting (SLM) device and a metallic scaffold was produced from Ti6Al4V powder with this machine, which was subjected to surface treatment by chemical etching. An object with certain initially adopted assumptions, i.e. shape and geometric dimensions, was finally achieved, which perfectly matches the patient bone recesses. The scaffold created was subjected to micro-and spectroscopic examinations.


2019 ◽  
Vol 180-181 ◽  
pp. 147-159 ◽  
Author(s):  
Huaiyuan Gu ◽  
Sheng Li ◽  
Martyn Pavier ◽  
Moataz M. Attallah ◽  
Charilaos Paraskevoulakos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document