Influence of Clutch Disc Waste (Grinding Dust) on Portland Cement Hydration

2019 ◽  
Vol 803 ◽  
pp. 284-288
Author(s):  
José da Silva Andrade Neto ◽  
Tiago Assunção Santos ◽  
Raphael Dias Mariano ◽  
Marcio Raymundo Morelli ◽  
Daniel Véras Ribeiro

This paper evaluates the effect of grinding dust (GD), a waste generated in the clutch disc finishing process, on Portland cement hydration. For this, pastes with additions of 5%, 10% and 15% GD, relative to cement weight, were molded and compared with a reference sample. Tests of setting time determination by Vicat needle, calorimetry, monitoring the ultrasonic pulse propagation velocity and mineralogical analysis (X-ray diffraction) in pastes with 1 day of hydration were carried out. It was observed that GD, due to the presence of copper, zinc and phenolic resin in its composition, is responsible for retarding cement hydration and thus increases the setting time and delays the evolution of heat release and pulse propagation velocity. However, the formation of new crystalline phases was not observed.

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Zhuangzhuang Liu ◽  
Wenxiu Jiao ◽  
Aimin Sha ◽  
Jie Gao ◽  
Zhenqiang Han ◽  
...  

Environmental condition affects the property of construction materials. This study gives an initial understanding of Portland cement hydration under low temperatures from the views of laboratory experiments (including electrical resistivity, degree of hydration (DoH), and maturity) as well as thermodynamic calculation. The hydrates of Portland cement at the given period were detected with X-ray diffraction (XRD), and their microstructure was observed by scanning electron microscope (SEM). Experiment result (i.e., DoH and electrical resistivity) indicated that the hydration of Portland cement was delayed by low temperature without hydration stopping at −5°C. Based on a basic kinetics model, the thermodynamic calculation predicted that the final hydrate differs in dependence on environmental temperatures. The mechanical behavior trend of Portland cement paste affected by low temperatures potentially is linked to the appearing of aluminate compounds and reduction of portlandite.


2012 ◽  
Vol 578 ◽  
pp. 121-124 ◽  
Author(s):  
Hong Liang Huang ◽  
Hui Fang Zhang ◽  
Fei Zhao ◽  
Xue Fei Li ◽  
Yan Fang Li

On the basis to clarify the Portland cement hydration mechanism, we have a brief analysis of research methods about Portland cement hydration mechanism, mainly including the hydration heat, ultrasonic method, resistivity method, mercury intrusion method, chemical combine method, CH quantitative measurement, X-ray diffraction method, scanning electron microscopy, providing a theoretical basis of Portland cement hydration mechanism and its material applications in engineering for further study and improvement.


Author(s):  
Kalina Grabowska ◽  
Marcin Koniorczyk

AbstractThe impact of three different organosilicon compounds: poly(dimethylsiloxane) (PDMS), potassium methylsiliconate (MESI) and triethoxyoctylsilane (OTES), used as integral admixtures, on Portland cement hydration has been investigated by isothermal calorimetry and DTA-TG analysis. The silicon-based compounds are widely used as internal hydrophobic agents added into batch water; therefore, their effectiveness was investigated by means of capillary water absorption test. The isothermal calorimetry was used to measure the rate and amount of heat released during ordinary Portland cement hydration with integral organosilicon admixtures at 20 °C, 30 °C, 40 °C and 50 °C. It allowed to determine the activation energy as well. The results indicate that used admixtures (except MESI admixture) decrease in the rate and amount of heat release during cement hydration. In addition, it is noticeable that the addition of MESI admixture significantly prolongs the induction period and delays hydration. In contrast to MESI and OTES admixtures, PDMS-based admixture does not affect significant on the activation energy. DTA-TG analysis had shown differences between reference sample and samples containing organosilicon admixtures during thermal decomposition, in terms of the amount of moisture and bound water, as well as Ca(OH)2 or carbonates. The results presented in this paper enable a better understanding of the interactions between the organosilicon integral admixtures and the cement matrix. The study shows the effect of integral admixtures on cement hydration and thus the potential effect on the final properties of the cement-based material.


2018 ◽  
Author(s):  
Stefan C. Figueiredo ◽  
Oğuzhan Çopuroğlu ◽  
Erik Schlangen

Sign in / Sign up

Export Citation Format

Share Document