Anomalous Twinning as the Macroscopic Deformation Mechanism for AZ31 Magnesium Alloy

2019 ◽  
Vol 810 ◽  
pp. 95-100
Author(s):  
Yusuke Onuki ◽  
Shigeo Sato

In order to study the plastic deformation mechanism of AZ31 magnesium alloy, in situ texture measurement during uniaxial tensile deformation is conducted by using neutron diffraction. The specimen is prepared from a rolled sheet so that the deformation axis is parallel to the rolling direction. By increasing strain, the alignment of <10-10> along the tensile axis is strengthened, which is due to the activation of the prism slip system. The basal pole concentration at the prior sheet normal direction is slightly decreased by the deformation and the new texture component is formed at the transvers direction. This can be understood by activation of the {10-12} tension twinning. These results indicate that the tension twinning plays an important role even when the tensile deformation is applied parallel to the basal plane.

Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 606
Author(s):  
César Palacios-Trujillo ◽  
José Victoria-Hernández ◽  
David Hernández-Silva ◽  
Dietmar Letzig ◽  
Marco A. García-Bernal

Magnesium alloys usually exhibit excellent superplasticity at high temperature. However, many Mg alloys have poor formation ability near room temperature. Therefore, preparation of Mg alloys with suitable microstructures to show low or intermediate temperature superplasticity is an important goal. In this work, the superplastic behavior at intermediate temperatures of a commercial ZK60 magnesium alloy processed by indirect extrusion was investigated. After extrusion, the alloy showed a refined and homogeneous microstructure with an average grain size of 4 ± 2 μm. Overall texture measurement indicated that the alloy showed a strong prismatic texture with the highest intensity oriented to pole ⟨101¯0⟩. A texture component ⟨1¯21¯1⟩ parallel to the extrusion direction was found; this type of texture is commonly observed in Mg alloys with rare earth additions. Tensile tests were performed at temperatures of 150, 200, and 250 °C at three strain rates of 10−2, 10−3, and 10−4 s−1. A very high ductility was found at 250 °C and 10−4 s−1, resulting in an elongation to failure of 464%. Based on calculations of the activation energy and on interpretation of the deformation mechanism map for magnesium alloys, it was concluded that grain boundary sliding (GBS) is the dominant deformation mechanism.


2005 ◽  
Vol 488-489 ◽  
pp. 461-464 ◽  
Author(s):  
Yong Chao Xu ◽  
Shi Hong Zhang ◽  
H.M. Liu ◽  
Z.T. Wang ◽  
W.T. Zheng ◽  
...  

The extruded sheets were prepared at the temperature between 350ıand 400ı, and the magnesium alloy sheet was manufactured by a new method, cross rolling, in which the rolling direction was changed in each pass. At the time, deep drawing of magnesium alloy sheet was investigated at elevated temperatures. The results show that the sheet has refined-grain by cross-rolling after it was annealed at 250ı, and the formability is significantly improved at lower temperatures, which is superior to the extruded sheet and the one-way rolled sheet. Deep drawing of magnesium alloy was performed successfully, and cylindrical cup of limited drawing ratio (LDR) 2.6 and 35 mm deep rectangular box (65ı50) was achieved at the lower temperature of 170ı. The different types of fracture were analyzed and reasonable parameters were determined.


2007 ◽  
Vol 26-28 ◽  
pp. 91-94
Author(s):  
Zhen Hua Chen ◽  
Yong Qi Cheng ◽  
Wei Jun Xia ◽  
Hong Ge Yan ◽  
Ding Chen

In order to improve the formability of AZ31 magnesium alloy sheet at room temperature, a new process, so-called equal channel angular rolling (ECAR) and followed by annealing treatment was applied to process the sheet. The optical microstructure of the as-received sheet was similar with that of the ECARed one after annealing treatment, the Erichsen value and limiting drawing ratio of the ECARed sheet was about 6.26mm and 1.6, respectively, which was much larger than that of 4.18mm and 1.2 for the as-received sheet. These can be attributed to the low yield ratio and high strain hardening exponent due to the modified texture induced by the shear deformation during ECAR process, which is favor of the activations of basal slipping and twinning at ambient temperature, especially deforming at the rolling direction.


2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Ming Chen ◽  
Xiaodong Hu ◽  
Hongyang Zhao ◽  
Dongying Ju

A large reduction rolling process was used to obtain complete dynamic recrystallization (DRX) microstructures with fine recrystallization grains. Based on the hyperbolic sinusoidal equation that included an Arrhenius term, a constitutive model of flow stress was established for the unidirectional solidification sheet of AZ31 magnesium alloy. Furthermore, discretized by the cellular automata (CA) method, a real-time nucleation equation coupled flow stress was developed for the numerical simulation of the microstructural evolution during DRX. The stress and strain results of finite element analysis were inducted to CA simulation to bridge the macroscopic rolling process analysis with the microscopic DRX activities. Considering that the nucleation of recrystallization may occur at the grain and R-grain boundary, the DRX processes under different deformation conditions were simulated. The evolution of microstructure, percentages of DRX, and sizes of recrystallization grains were discussed in detail. Results of DRX simulation were compared with those from electron backscatter diffraction analysis, and the simulated microstructure was in good agreement with the actual pattern obtained using experiment analysis. The simulation technique provides a flexible way for predicting the morphological variations of DRX microstructure accompanied with plastic deformation on a hot-rolled sheet.


2007 ◽  
Vol 561-565 ◽  
pp. 287-290
Author(s):  
Kazutaka Suzuki ◽  
Xin Sheng Huang ◽  
Akira Watazu ◽  
Ichinori Shigematsu ◽  
Naobumi Saito

It was reported that the cold and warm press formability of the magnesium alloy was improved by the application of a differential speed rolling (DSR). However, it can be considered that the microstructure and the texture of the DSR processed sheets greatly change with the rolling conditions. In this study, commercial AZ31B magnesium alloy extrusions were processed by DSR at a differential speed ratio of 1.167 and a reduction per pass of 10% or less, and the effects of the rolling temperature, the number of rolling passes and reversal of the rolling direction on texture and mechanical properties were examined. As a result, it was found that the optimal rolling temperature in terms of the workability and formability of the material was 573 K. And the elongation and formability were maximal in sheets processed by 4–6 passes of DSR. Moreover, reversing the shear direction made the microstructure more homogeneous and finer than unidirectional shear, and improved the mechanical properties and formability. This improvement was greater in samples where the shear direction was reversed once in the middle than where it was reversed for each pass.


2007 ◽  
Vol 546-549 ◽  
pp. 281-284 ◽  
Author(s):  
Da Yong Li ◽  
Qun Feng Chang ◽  
Ying Hong Peng ◽  
Xiao Qin Zeng

Uniaxial tensile test of a cross rolled magnesium alloy sheet was conducted under different temperatures and strain rates. The mechanical propriety of AZ31 magnesium alloy sheet was analyzed according to the true strain-stress curves. Then the non-thermal drawing process, during which the temperature of die, blankholder and blank is 200°C while the punch is kept at room temperature, was simulated by the thermo-mechanical coupled finite element method. The deformation behavior and the temperature change in the drawing process was investigated. Due to the heat conduction, there was non-uniform distribution of temperature along flange area, force transfer area and deformation area. Therefore the resistance of the force transfer area is enhanced and the warm formability of magnesium alloy sheet can be further improved. The thermo-mechanical coupled simulation provides a good guide for the development of non-isothermal drawing techniques.


1997 ◽  
Vol 492 ◽  
Author(s):  
Shenyang Hu ◽  
Matthias Ludwig ◽  
Liam Farrissey ◽  
Siegfried Schmauder

ABSTRACTThe atomistic processes and stress-strain-curves during uniaxial tensile deformation of a single α-Fe nanocrystal have been studied with the molecular static method. Periodic boundary conditions are imposed along one direction perpendicular to the tensile axis to model plane strain conditions. The effects of the model sizes in plane, boundary conditions and crystal orientations on the stress-strain curves are systematically analyzed. Various deformation evidences such as dislocation movement, dislocation piling up and twinning are clearly observed. The deformation and fracture characteristics of a-Fe and their dependencies on the boundary conditions are investigated.


1999 ◽  
Vol 33 (1-4) ◽  
pp. 111-123
Author(s):  
T. A. Lychagina ◽  
D. I. Nikolayev

The influence of the texture on material mechanical properties and deformation behaviour was widely discussed. (refer to Bunge, H.J. (1982). Texture Analysis in Materials Science Mathematical Methods). Butterworths, London. In this work elastic properties (Young's modulus) of cold rolled Al–6%Mg alloy sheet were estimated taking into account lattice preferred orientations, which can be described by the orientation distribution function (ODF). The ODF was reconstructed from pole figures measured by means of neutron diffraction and was approximated by normal distributions (Savyolova, T.I. (1994)Zavodskaya Laboratoria 50, N5, 48–52). The method used for calculation is able to express explicitly the polycrystalline elastic property via the single crystal property and the texture parameters.Stress–strain dependenc (deformation curves) was measured by means of uniaxial tensile tests for Al–6%Mg alloy samples with different tensile axis directions. Samples for uniaxial tests were cut at different angles to the rolling direction. The conformity between experimental and computed results is discussed.


Sign in / Sign up

Export Citation Format

Share Document