Numerical Studies of the Correlation between Inclusion Shape and Effective Elastic Properties of the Particle Reinforced Composites

2019 ◽  
Vol 827 ◽  
pp. 234-239
Author(s):  
Romana Piat ◽  
Pascal A. Happ

In present paper the effect of inclusions with irregular shapes on the elastic material properties of two-phase composites is studied. The irregular shapes of the real inclusions were approximated using smooth three-dimensional structures. For this needs the images of the microscopic particles were numerically approximated through smooth structures using methods of the computer algebra and were used for the following FE studies. The reference elements with typical inclusions with irregular shapes were determined and used for calculation of the effective material properties.

2007 ◽  
Vol 353-358 ◽  
pp. 567-570
Author(s):  
Wen Zhong Cai ◽  
Shan Tung Tu ◽  
Yang Yan Zheng ◽  
Jian Ming Gong

A new methodology of computer simulation is proposed to perform finite element (FE) calculations of uniaxial tensile deformation on the three-dimensional (3D) complex microstructures, through its application to the microstructure of aluminum matrix containing randomly distributed and oriented SiC particles of highly variable and angular geometry. Compared with the simplified microstructure model, the complex microstructure model shows significant differences in terms of micromechanical fields and macroscopic uniaxial deformation. The results reveal that a quantitative and convenient reconstruction of microstructure of particulate composites is crucial for both the prediction and design of material properties.


2021 ◽  
Vol 19 (2) ◽  
pp. 241
Author(s):  
Ruslan Balokhonov ◽  
Varvara Romanova ◽  
Eugen Schwab ◽  
Aleksandr Zemlianov ◽  
Eugene Evtushenko

A technique for computer simulation of three-dimensional structures of materials with reinforcing particles of complex irregular shapes observed in the experiments is proposed, which assumes scale invariance of the natural mechanical fragmentation. Two-phase structures of metal-matrix composites and coatings of different spatial scales are created, with the particles randomly distributed over the matrix and coating computational domains. Using the titanium carbide reinforcing particle embedded into the aluminum as an example, plastic strain localization and residual stress formation along the matrix-particle interface are numerically investigated during cooling followed by compression or tension of the composite. A detailed analysis is performed to evaluate the residual stress concentration in local regions of bulk tension formed under all-round and uniaxial compression of the composite due to the concave and convex interfacial asperities.


Author(s):  
H. T. Liu ◽  
L. Z. Sun ◽  
J. W. Ju

To simulate the evolution process of interfacial debonding between particle and matrix, and to further estimate its effect on the overall elastic behavior of particle-reinforced composites, a two-level microstructural-effective damaged model is developed. The microstructural damage mechanism is governed by the interfacial debonding of reinforcement and matrix. The progressive damage process is represented by the debonding angles that are dependent on the external loads. For those debonded particles, the elastic equivalency is constructed in terms of the stiffness tensor. Namely, the isotropic yet debonded particles are replaced by the orthotropic perfect particles. The volume fraction evolution of debonded particles is characterized by the Weibull’s statistical approach. Mori-Tanaka’s method is utilized to determine the effective stiffness tensor of the resultant multi-phase composites. The proposed constitutive framework is developed under the general three-dimensional loading condition. Examples are conducted to demonstrate the capability of the proposed model.


2019 ◽  
Vol 3 (4) ◽  
pp. 94 ◽  
Author(s):  
Wu ◽  
He

In this paper, the authors develop Reissner’s mixed variational theorem (RMVT)-based finite layer methods for the three-dimensional (3D) coupled thermoelastic analysis of simply supported, functionally graded, doubly curved (DC) shells with temperature-independent material properties. A two-phase composite material is considered to form the shell, and its material properties are assumed to obey a power–law distribution of the volume fractions of the constituents through the thickness direction of the shell. The effective material properties are estimated using the Mori–Tanaka scheme. The accuracy and convergence rate of these RMVT-based finite layer methods are validated by comparing their solutions with the quasi 3D and accurate two-dimensional solutions available in the literature.


Metals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 202 ◽  
Author(s):  
Panagiotis Bazios ◽  
Konstantinos Tserpes ◽  
Spiros G. Pantelakis

Nanocrystalline metals have been the cause of substantial intrigue over the past two decades due to their high strength, which is highly sensitive to their microstructure. The aim of the present project is to develop a finite element two-phase model that is able to predict the elastic moduli and the yield strength of nanostructured material as functions of their microstructure. The numerical methodology uses representative volume elements (RVEs) in which the material microstructure, i.e., the grains and grain boundaries, is presented utilizing the three-dimensional (3D) Voronoi algorithm. The implementation of the 3D Voronoi particles was performed on the nanostructure investigation of ultrafine materials by SEM and TEM. Proper material properties for the grain interiors (GI) and grain boundaries (GB) were computed using the Hall-Petch equation and a dislocation-based analytical approach, respectively. The numerical outcomes show that the Young’s Modulus of nanostructured copper increased by increasing the crystallite volume fraction, while the yield strength increased by decreasing the grain size. The numerical predictions were strongly confirmed in opposition to finite element outcomes, experimental results from the open literature, and predictions from the rule of mixtures and the Mori-Tanaka analytical models.


Sign in / Sign up

Export Citation Format

Share Document