Casting of Thin Bare Wire Using Wheel Caster Equipped with Rotating Side-Dam Plates

2020 ◽  
Vol 846 ◽  
pp. 152-156
Author(s):  
Toshio Haga ◽  
Kirito Itou ◽  
Hisaki Watari ◽  
Shinichi Nishida

A simple twin-wheel caster is proposed for casting thin bare wire. An unequal diameter twin wheel caster equipped with rotating side-dam plates is proposed for casting a thin bare wire of aluminum alloy to shorten the fabrication process. The rotating side-dam plate was made of mild steel. Al-10%Mg bare wire with a rectangular cross section could be cast at wheel speeds of 3 and 4 m/min. Area of the bare wire was less than 100 mm2 at these wheel speeds. The side surface of the bare wire was made flat by the rotating side-dam plates. The rotating side-dam plates prevent the cross section of the bare wire from becoming concave.

2019 ◽  
Vol 805 ◽  
pp. 31-36 ◽  
Author(s):  
Toshio Haga ◽  
Taisei Miyake

The cross section of a thin rod cast by a single-wheel caster, for which the wheel cross section is an inverted trapezoidal groove, is concave. To make the cross section convex, an inner side-dam plate is proposed. A single-wheel caster with a flat wheel (without a groove) and rotating side-dam plates is also proposed. 5182 aluminum alloy rods with a convex or rectangular cross section can be cast. The area of the rod is smaller than 150 mm2. The diameter of the converted circle area is 15 mm.


2021 ◽  
Vol 1042 ◽  
pp. 61-67
Author(s):  
Toshio Haga ◽  
Naotsugu Okuda ◽  
Hisaki Watari ◽  
Shinichi Nishida

A thin aluminum rod (width: 5 mm) was cast using a twin-wheel caster equipped with rotating side-dam plates. The upper and lower casting wheels were made of copper. The width of the flat upper and lower casting wheels was 5 mm. The rotating side-dam plate was made of mild steel. Paper 0.5 mm thick was pasted onto the plate. Boron nitride was sprayed onto the paper as an insulator and lubricant. A 6061 aluminum alloy thin rod could be cast continuously at casting speeds of 4 and 5 m/min. Molten metal was poured onto the lower wheel from a launder and conveyed into a square gap made by the lower wheel, upper wheel, and side-dam plates. The cross section of the cast rod was rectangular. The cross-sectional area of the rectangular rod was 12 to 15 mm2.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2119
Author(s):  
Luís Mesquita David ◽  
Rita Fernandes de Carvalho

Designing for exceedance events consists in designing a continuous route for overland flow to deal with flows exceeding the sewer system’s capacity and to mitigate flooding risk. A review is carried out here on flood safety/hazard criteria, which generally establish thresholds for the water depth and flood velocity, or a relationship between them. The effects of the cross-section shape, roughness and slope of streets in meeting the criteria are evaluated based on equations, graphical results and one case study. An expedited method for the verification of safety criteria based solely on flow is presented, saving efforts in detailing models and increasing confidence in the results from simplified models. The method is valid for 0.1 m2/s 0.5 m2/s. The results showed that a street with a 1.8% slope, 75 m1/3s−1 and a rectangular cross-section complies with the threshold 0.3 m2/s for twice the flow of a street with the same width but with a conventional cross-section shape. The flow will be four times greater for a 15% street slope. The results also highlighted that the flood flows can vary significantly along the streets depending on the sewers’ roughness and the flow transfers between the major and minor systems, such that the effort detailing a street’s cross-section must be balanced with all of the other sources of uncertainty.


Author(s):  
Hareesh K. R. Kommepalli ◽  
Andrew D. Hirsh ◽  
Christopher D. Rahn ◽  
Srinivas A. Tadigadapa

This paper introduces a novel T-beam actuator fabricated by a piezoelectric MEMS fabrication process. ICP-RIE etching from the front and back of a bulk PZT chip is used to produce stair stepped structures through the thickness with complex inplane shapes. Masked electrode deposition creates active and passive regions in the PZT structure. With a T-shaped crosssection, and bottom and top flange and web electrodes, a cantilevered beam can bend in-plane and out-of-plane with bimorph actuation in both directions. One of these T-beam actuators is fabricated and experimentally tested. An experimentally validated model predicts that the cross-section geometry can be optimized to produce higher displacement and blocking force.


2019 ◽  
Vol 61 (5-6) ◽  
pp. 300-304
Author(s):  
V. V. Yashin ◽  
E. V. Aryshenskii ◽  
S. V. Konovalov ◽  
V. Yu. Aryshenskii ◽  
I. A. Latushkin

Author(s):  
Marek Lechman

The paper presents section models for analysis of the resistance of RC members subjected to bending moment with or without axial force. To determine the section resistance the nonlinear stress-strain relationship for concrete in compression is assumed, taking into account the concrete softening. It adequately describes the behavior of RC members up to failure. For the reinforcing steel linear elastic-ideal plastic model is applied. For the ring cross-section subjected to bending with axial force the normalized resistances are derived in the analytical form by integrating the cross-sectional equilibrium equations. They are presented in the form of interaction diagrams and compared with the results obtained by testing conducted on RC columns under eccentric compression. Furthermore, the ultimate normalized bending moment has been derived for the rectangular cross-section subjected to bending without axial force. It was applied in the cross-sectional analysis of steel and concrete composite beams, named BH beams, consisting of the RC rectangular core placed inside a reversed TT welded profile. The comparisons made indicated good agreements between the proposed section models and experimental results.


2020 ◽  
pp. 93-101
Author(s):  
Serhii Bondarenko ◽  
Olexandr Grydin ◽  
Yaroslav Frolov ◽  
Olga Kuzmina ◽  
Oleksandr Bobukh

Specialists of metallurgy and mechanical engineering are intensively working at materials with controlled properties. In fact, at this stage we are already talking about the design of new materials for the specific tasks of the industry. One of the ways to achieve the regulated mechanical properties of metal products is to use the influence of plastic deformation with its different parameters in individual sections of the deformable material. In this study, we studied the effect of cold rolling on the properties of a strip of aluminum alloy EN AW-1050 with artificially created differences in the deformation parameters in different parts of the cross section of the profile. For this, a pre-shaped sample was prepared by conducting joint cold rolling of a strip of the specified material 420 mm long, 180 mm wide and 2.9 mm thick with a steel profiling tape 80 mm wide and 2 mm thick superimposed on it (length of an aluminum strip and steel profiling tape are the same). As a result of joint deformation, the steel strip rolled into the base metal and changed the geometry of the cross section and the properties of the obtained strip. Next, the obtained strip was subjected to heat treatment and rolled in a duo mill. After rolling, thin samples were made from fabricated flat strips to assess mechanical properties, in particular tensile tests were performed according to ISO 6892-1: 2009 and Brinell hardness tests were performed according to ISO 6506-1: 2014. Experimental studies of cold rolling of strips with profiled cross section of aluminum alloy EN AW-1050 were carried out. The possibility of forming heterogeneous properties in a flat aluminum strip by cold plastic deformation is shown and the maximum average values of the increase in the main indicators of mechanical properties on individual elements of the strip are determined. The maximum difference between the mechanical properties of the thick and thin elements of the profiled strip is observed in the hardness index and reaches 37.5%. The maximum obtained average value of the increase in yield strength and tensile strength is 26% and 18%, which is achieved with true deformation of the thick element of the profiled strip 0.165 and 0.234.


2002 ◽  
Vol 458 ◽  
pp. 153-180 ◽  
Author(s):  
S. ALBENSOEDER ◽  
H. C. KUHLMANN

The flow in an infinite slab of rectangular cross-section is investigated numerically by a finite volume method. Two facing walls which move parallel to each other with the same velocity, but in opposite directions, drive a plane flow in the cross-section of the slab. A linear stability analysis shows that the two-dimensional flow becomes unstable to different modes, depending on the cross-sectional aspect ratio, when the Reynolds number is increased. The critical mode is found to be stationary for all aspect ratios. When the separation of the moving walls is larger than approximately twice the height of the cavity, the basic flow forms two vortices, each close to one of the moving walls. The instability of this flow is of centrifugal type and similar to that in the classical lid-driven cavity problem with a single moving wall. When the moving walls are sufficiently close to each other (aspect ratio less than 2) the two vortices merge and form an elliptically strained vortex. Owing to the dipolar strain this flow becomes unstable through the elliptic instability. When both moving walls are very close, the finite-length plane-Couette flow becomes unstable by a similar elliptic mechanism near both turning zones. The critical mode produces wide streaks reaching far into the cavity. For a small range of aspect ratios near unity the flow consists of a single vortex. Here, the strain field is dominated by a four-fold symmetry. As a result the instability process is analogous to the instability of a Rankine vortex in an quadripolar strain field, resulting from vortex stretching into the four corners of the cavity.


1988 ◽  
Vol 110 (2) ◽  
pp. 104-109 ◽  
Author(s):  
N. G. Shrive ◽  
T. C. Lam ◽  
E. Damson ◽  
C. B. Frank

There appears to be no generally accepted method of measuring in-situ the cross-sectional area of connective tissues, particularly small ones, before mechanical testing. An instrument has therefore been devised to measure the cross-sectional area of one such tissue, the rabbit medial collateral ligament, directly and nondestructively. However, the methodology is general and could be applied to other tissues with appropriate changes in detail. The concept employed in the instrument is to measure the thickness of the tissue as a function of position along the width of the tissue. The plot obtained of thickness versus width position is integrated to provide the cross-sectional area. This area is accurate to within 5 percent, depending mainly on alignment of the instrument and pre-load of the ligament. Results on the mid-substance of the rabbit medial collateral ligaments are repeatable and reproducible. Values of maximum width and thickness are less variable than those obtained with a vernier caliper. The measured area is considerably less than that estimated assuming rectangular cross-section and slightly less than that estimated on the assumption of elliptical cross-section.


Sign in / Sign up

Export Citation Format

Share Document