Analysis of Lateral Torsional Buckling Strength of Single Symmetric I Beam

2020 ◽  
Vol 846 ◽  
pp. 226-231
Author(s):  
Wei Hsun Hsu ◽  
Yu Xin Liu ◽  
Kun Ze Ho ◽  
Wei Ting Hsu

This study evaluates the variation of the bending moment strength of the single symmetrical and double symmetrical I-beam design. This study compares the use of a double-symmetric I-section with a large, small flange, a single-symmetric I-section with a large compression and large tension flange. The study shows that the four sections have the largest wing strength with double-symmetric I-section, and the inelastic and elastic strengths are similar to those of the single-symmetric I-section, especially the elastic region is almost the same. In the plastic phase, the double symmetrical flanges have a high cross-sectional strength. In the inelastic phase, the intensity of two individual symmetrical sections of the same area is close to a double symmetrical section. The use of a single symmetrical I-beam can be preferred over a double-symmetric I-beam. This study provides a single-symmetric I-beam strength difference analysis, providing users with a variety of options for comparing cross-sections.

2020 ◽  
Vol 10 (10) ◽  
pp. 3639 ◽  
Author(s):  
Celal Cakiroglu ◽  
Gebrail Bekdaş ◽  
Sanghun Kim ◽  
Zong Geem

The shear buckling of web plates and lateral–torsional buckling are among the major failure modes of plate girders. The importance of the lateral–torsional buckling capacity of plate girders was further evidenced when several plate girders of a bridge in Edmonton, Alberta, Canada failed in 2015, because insufficient bracing led to the lateral buckling of the plate girders. In this study, we focus on the optimisation of the cross-sections of plate girders using a well-known and extremely efficient meta-heuristic optimisation algorithm called the harmony search algorithm. The objective of this optimisation is to design the cross-sections of the plate girders with the minimum area that satisfies requirements, such as the lateral–torsional buckling load and ultimate shear stress. The base geometry, material properties, applied load and boundary conditions were taken from an experimental study and optimised. It was revealed that the same amount of load-carrying capacity demonstrated by this model can be achieved with a cross-sectional area 16% smaller than that of the original specimen. Furthermore, the slenderness of the web plate was found to have a decisive effect on the cost-efficiency of the plate girder design.


2020 ◽  
Vol 23 (11) ◽  
pp. 2442-2457
Author(s):  
Noémi Seres ◽  
Krisztina Fejes

This article focuses on the lateral-torsional buckling resistance of girders with slender, class 4 cross-sections with a research aim to check the accuracy of the design resistance model of EN1993-1-1 and EN1993-1-5 on the coupled instability of lateral-torsional buckling and local plate buckling resistances. The current Eurocode-based design method considers in the effective cross-sectional resistance calculation that yield strength is reached in the extreme fibre of the cross-section, and the reduction factor [Formula: see text] related to local plate buckling is calculated based on this assumption. However, if lateral-torsional buckling occurs, maximum stress in the web can be significantly smaller at the ultimate limit state which is not considered in the effective cross-sectional resistance calculation. On the other side, EN1993-1-1 proposes to consider the effective bending moment resistance in the relative slenderness calculation of lateral-torsional buckling, which is in contradiction with the general definition of the relative slenderness ratio [Formula: see text], which should refer to the plastic resistance divided by the critical load of the structure. This article aims to check if the current Eurocode-based design rules need improvement and to check the effect of the above-mentioned specific issues on the calculated lateral-torsional buckling resistance. An extensive numerical research programme is executed to check and compare the lateral-torsional buckling resistance of class 3 (as reference) and class 4 cross-sections, and results are compared to Eurocode-based design models.


Author(s):  
Vera V Galishnikova ◽  
Tesfaldet H Gebre

Introduction. Structural stability is an essential part of design process for steel structures and checking the overall stability is very important for the determination of the optimum steel beams section. Lateral torsional buckling (LTB) normally associated with beams subject to vertical loading, buckling out of the plane of the applied loads and it is a primary consideration in the design of steel structures, consequently it may reduce the load currying capacity. Methods. There are several national codes to verify the steel beam against LTB. All specifications have different approach for the treatment of LTB and this paper is concentrated on three different methods: America Institute of Steel Construction (AISC), Eurocode (EC) and Russian Code (SP). The attention is focused to the methods of developing LTB curves and their characteristics. Results. AISC specification identifies three regimes of buckling depending on the unbraced length of the member ( Lb ). However, EC and SP utilize a reduction factor (χ LT ) to treat lateral torsional buckling problem. In general, flexural capacities according to AISC are higher than those of EC and SP for non-compact sections.


Author(s):  
Lawrence N Virgin

Locating the shear, or flexural, center of non-symmetric cross-sectional beams is a key element in the teaching of structural mechanics. That is, establishing the point on the plane of the cross-section where an applied load, generating a bending moment about a principal axis, results in uni-directional deflection, and no twisting. For example, in aerospace structures it is particularly important to assess the propensity of an airfoil section profile to resist bending and torsion under the action of aerodynamic forces. Cross-sections made of thin-walls, whether of open or closed form are of special practical importance and form the basis of the material in this paper. The advent of 3D-printing allows the development of tactile demonstration models based on non-trivial geometry and direct observation.


2016 ◽  
Vol 99 ◽  
pp. 182-194 ◽  
Author(s):  
Pattamad Panedpojaman ◽  
Worathep Sae-Long ◽  
Tanan Chub-uppakarn

Sign in / Sign up

Export Citation Format

Share Document