Effect of Nanomaterials on Mechanical Properties of Fiber Reinforced Concrete

2020 ◽  
Vol 852 ◽  
pp. 59-69
Author(s):  
Zhao Liang Sheng ◽  
Yan Fu Duan ◽  
Duo Tian Xia ◽  
Olivier Thierry

In order to explore the application of nanomaterials in fiber concrete, in this research, the effect of nanomaterials SiO2 on the basalt fiber concrete was studied with experimental analysis methods. The variation values of mechanical properties were calculated respectively. On this basis, the influences of silicon dioxide nanometer and basalt fibers on the mechanical properties of nanosilica silicon dioxide nanometer basalt fiber concrete were studied. Different contents of silicon dioxide nanometer were added to concrete, different contents of basalt fibers were added to concrete, and both were added to concrete. The results showed that adding silicon dioxide nanometer could modify building concrete and significantly improve the mechanical properties of concrete. the increase of silicon dioxide nanometer content of nanomaterials, the strength of concrete showed a trend of first rising and then falling. When silicon dioxide nanometer content was 1.2%, the mechanical strength was the largest. As the contents of basalt fiber increase, concrete strength showed a trend of first increasing and then decreasing. When basalt fiber content was 3kg/m3, it was the optimal content and the concrete strength was the largest. And the mechanical properties of the concrete mixed with silicon dioxide nanometer and basalt fibers were significantly improved.

2019 ◽  
Vol 8 (3) ◽  
pp. 2909-2912

The efficacy of fiber reinforced concrete in various application of civil engineering is unassailable. It is a heterogeneous material that includes the fibrous substance which increases its structural integrity and cohesion. In recent years, continuous basalt fibers extruded from naturally basalt rock are attracted attention due to its high temperature and abrasion resistance. Basalt fibers has emerged as a contender in fiber reinforcement composites. This paper aims to evaluate the outcome of basalt fiber on the mechanical strength of concrete and also identify the content that have a optimum influence on concrete. Compressive, split tensile and flexural strength of basalt fiber reinforced concrete is increased than the control concrete. The experimental study shows that the mechanical strength of concrete is increased up to 0.9% of basalt fiber in volume fraction. From the result it is observed that the optimum content of Basalt fiber is 0.9% and the ability of basalt fiber to arrest the cracks area indicated as reason for escalation in mechanical properties.


2021 ◽  
Vol 264 ◽  
pp. 02030
Author(s):  
Leonid Dvorkin ◽  
Oleh Bordiuzhenko ◽  
Vadim Zhitkovsky ◽  
Svyatoslav Gomon ◽  
Sviatoslav Homon

Adding different fiber types may yield improvement of steel fiber reinforced concrete (SFRC) features. Therefore, the investigation of hybrid fiber reinforced concrete (HFRC) mechanical properties is relevant. The effect of adding hybrid steel and basalt fiber on the mechanical properties of fine-grained concrete is studied. It is shown that hybrid fiber reinforcement using optimal steel and basalt fiber ratio allows preventing concrete mixtures' segregation and improving their structure homogeneity. This, in turn, allows achieving higher concrete strength values. In most cases, the design of such concrete compositions is based on engineering experience that limits the designers' capabilities. Therefore, an effective methodology for proper HFRC composition design should be developed. The present study is focused on developing such a methodology. The developed methodology includes using the mathematical experiments planning method to design optimal composition of high-strength fine-grained fiber reinforced concrete with hybrid steel and basalt fiber reinforcement. It is demonstrated that the proposed method can be effectively used for the design of optimal compositions of HFRC.


2020 ◽  
Vol 198 ◽  
pp. 01010
Author(s):  
Duo Wu

Concrete structure will be corroded under acid rain scouring and soaking for a long time, which has a great influence on its durability life. In order to further study the damage characteristics of fiber reinforced concrete under acid rain erosion, the formation mechanism of acid rain and its influence on the corrosion and deterioration of concrete and fiber materials were analyzed in this paper. Taking basalt fiber concrete as an example, the characteristics such as porosity, compressive strength and mechanical indexes were studied and analyzed. Moreover, the reasons for the optimal fiber content was briefly analyzed. The results show that the inner structure of basalt concrete mixed with 0.1% fiber was the most stable and the corrosion resistance was the most satisfying.This conclusion has certain reference significance for the corrosion damage research of fiber reinforced concrete.


2014 ◽  
Vol 662 ◽  
pp. 24-28 ◽  
Author(s):  
Xi Du ◽  
You Liang Chen ◽  
Yu Chen Li ◽  
Da Xiang Nie ◽  
Ji Huang

With cooling tests on polypropylene fiber reinforced concrete and plain concrete that were initially subjected to different heating temperatures, the change of mechanical properties including mass loss, uniaxial compressive strength and microstructure were analyzed. The results show that the compressive strength of concrete tend to decrease with an increase in temperature. After experiencing high temperatures, the internal fibers of the polypropylene fiber reinforced concrete melted and left a large number of voids in it, thereby deteriorating the mechanical properties of concrete.


2014 ◽  
Vol 1065-1069 ◽  
pp. 706-709 ◽  
Author(s):  
Xiao Jun Liu ◽  
Che Fei Zhu ◽  
Yong Gen Wu ◽  
Qing Tao Liu

In order to meet the requirements of the use of aircraft, improve mechanical properties of pavement concrete, the steel fiber mixed basalt hybrid fiber reinforced concrete technical route was proposed, by using the method of orthogonal experiment, steel fiber with 1.2%,1.5%,1.8% these 3 volume fraction and basalt fiber in 0.05%,0.1%,0.15% these 3 volume fraction mixed, research the rules of its effect on the performance of airport pavement concrete.


2011 ◽  
Vol 194-196 ◽  
pp. 1103-1108 ◽  
Author(s):  
Yong Xin Yang ◽  
Jie Lian

In this paper, mechanical performances of 480 specimens are tested and influences of basalt fiber ratio, slenderness, soakage material are studied. Results indicate that mechanical properties of BFRC are better than plain concrete. It can be found that the best mechanical performance may be get when the basalt fiber soaked by water-solubility material and its ratio at 8.4 to 14 kg per square meter as well as slenderness at 600 to 800.


2021 ◽  
Vol 11 (17) ◽  
pp. 7926
Author(s):  
Qian Zhang ◽  
Wenqing Zhang ◽  
Yu Fang ◽  
Yongjie Xu ◽  
Xianwen Huang

In order to solve the problem of highly brittle shaft lining under dynamic loading, a combination of hybrid fiber concrete mixed with steel and polypropylene fiber is proposed to make shaft lining. C60, the concrete commonly used in shaft lining, was selected as the reference group. The static mechanical properties, dynamic mechanical properties, and crack failure characteristics of the hybrid fiber concrete were experimentally studied. The test results showed that compared to the reference group concrete, the compressive strength of the hybrid fiber-reinforced concrete did not significantly increase, but the splitting tensile strength increased by 60.4%. The split Hopkinson compression bar results showed that the optimal group peak stress and peak strain of the hybrid fiber concrete increased by 58.2% and 79.2%, respectively, and the dynamic toughness increased by 68.1%. The strain distribution before visible cracks was analyzed by the DIC technology. The results showed that the strain dispersion phenomenon of the fiber-reinforced concrete specimen was stronger than that of the reference group concrete. By comparing the crack failure forms of the specimens, it was found that compared to the reference group concrete, the fiber-reinforced concrete specimens showed the characteristics of continuous and slow ductile failure. The above results suggest that HFRC has significantly high dynamic splitting tensile strength and compressive deformation capacity, as well as a certain anti-disturbance effect. It is an excellent construction material for deep mines under complex working conditions.


Sign in / Sign up

Export Citation Format

Share Document