Internal Stresses and Microstructure in Plastically Deformed Metals and Alloys as Revealed by Asymmetric X-Ray Line Broadening

1995 ◽  
Vol 97-98 ◽  
pp. 437-460
Author(s):  
Haël Mughrabi ◽  
Tamás Ungár ◽  
Horst Biermann
1997 ◽  
Vol 503 ◽  
Author(s):  
B. L. Evans ◽  
J. B. Martin ◽  
L. W. Burggraf

ABSTRACTThe viability of a Compton scattering tomography system for nondestructively inspecting thin, low Z samples for corrosion is examined. This technique differs from conventional x-ray backscatter NDI because it does not rely on narrow collimation of source and detectors to examine small volumes in the sample. Instead, photons of a single energy are backscattered from the sample and their scattered energy spectra are measured at multiple detector locations, and these spectra are then used to reconstruct an image of the object. This multiplexed Compton scatter tomography technique interrogates multiple volume elements simultaneously. Thin samples less than 1 cm thick and made of low Z materials are best imaged with gamma rays at or below 100 keV energy. At this energy, Compton line broadening becomes an important resolution limitation. An analytical model has been developed to simulate the signals collected in a demonstration system consisting of an array of planar high-purity germanium detectors. A technique for deconvolving the effects of Compton broadening and detector energy resolution from signals with additive noise is also presented. A filtered backprojection image reconstruction algorithm with similarities to that used in conventional transmission computed tomography is developed. A simulation of a 360–degree inspection gives distortion-free results. In a simulation of a single-sided inspection, a 5 mm × 5 mm corrosion flaw with 50% density is readily identified in 1-cm thick aluminum phantom when the signal to noise ratio in the data exceeds 28.


Author(s):  
Simon Engelbert ◽  
Rolf-Dieter Hoffmann ◽  
Jutta Kösters ◽  
Steffen Klenner ◽  
Rainer Pöttgen

Abstract The structures of the equiatomic stannides RERhSn with the smaller rare earth elements Y, Gd-Tm and Lu were reinvestigated on the basis of temperature-dependent single crystal X-ray diffraction data. GdRhSn crystallizes with the aristotype ZrNiAl at 293 and 90 K. For RE = Y, Tb, Ho and Er the HP-CeRuSn type (approximant with space group R3m) is already formed at room temperature, while DyRhSn adopts the HP-CeRuSn type below 280 K. TmRhSn and LuRhSn show incommensurate modulated variants with superspace groups P31m(1/3; 1/3; γ) 000 (No. 157.1.23.1) (γ = 3/8 for TmRhSn and γ = 2/5 for LuRhSn). The driving force for superstructure formation (modulation) is a strengthening of Rh–Sn bonding. The modulation is expressed in a 119Sn Mössbauer spectrum of DyRhSn at 78 K through line broadening.


1974 ◽  
Vol 29 (12) ◽  
pp. 1771-1777 ◽  
Author(s):  
N. C. Haider ◽  
S. H. Hunter

Powder Cd of 99.999% purity was prepared at room temperature (25 °C) and x-ray diffraction patterns were obtained using CuKaα radiation with Ni-filter. The line broadening was analyzed after incorporating the appropriate correction factors. At room temperature Cd was found to have large particle size (653 A), small root mean square strain (.001), small deformation fault probability a (.003). and negligible growth fault probability β(0). Compared to other hep metals which have been studied earlier and which have higher melting temperatures, metal Cd is much less affected by mechanical deformation at room temperature.


1994 ◽  
Vol 376 ◽  
Author(s):  
M. Vrána ◽  
P. Klimanek ◽  
T. Kschidock ◽  
P. Lukáš ◽  
P. Mikula

ABSTRACTInvestigation of strongly distorted crystal structures caused by dislocations, stacking-faults etc. in both plastically deformed f.c.c. and b.c.c. metallic materials was performed by the analysis of the neutron diffraction line broadening. Measurements were realized by means of the high resolution triple-axis neutron diffractometer equipped by bent Si perfect crystals as monochromator and analyzer at the NPI Řež. The substructure parameters obtained in this manner are in good agreement with the results of X-ray diffraction analysis.


Polymer ◽  
1973 ◽  
Vol 14 (9) ◽  
pp. 402-404
Author(s):  
A.K. Kulshreshtha ◽  
R.E. Hunter ◽  
N.E. Dweltz

Sign in / Sign up

Export Citation Format

Share Document