High Pressure Supercritical Carbon Dioxide Separation from its Mixture with Nitrogen at Different Temperatures

2020 ◽  
Vol 1008 ◽  
pp. 1-14
Author(s):  
Rehab M. El-Maghraby ◽  
Mahmoud Ramzy ◽  
Ahmed K. Aboul-Gheit

Carbon dioxide (CO2) capturing from point sources is currently being proposed as a way to minimize CO2 emissions to the atmosphere. Carbon dioxide is considered one of the greenhouse gases that affects our environment. Legislations are being enforced in many countries to limit CO2 emissions to the atmosphere. Two methods are mostly used for CO2 capturing from flue gases and natural gases; the first method is absorption using amine-based solvents, while the second is membrane separation. The first method is effective for CO2 separation from gas mixtures with low CO2 concentration in the range of 10 to 20%, while the other can handle gas mixture with intermediate CO2 concentration but there is a limit on the CO2 purity. Hence, such methods cannot be used in pre-combustion and oxy fuel technologies where a more concentrated CO2 gas stream is produced. Throughout this work, a new method is introduced to separate carbon dioxide from its mixture with nitrogen (N2) at high concentrations, 90 mol.% CO2 and 10 mol.% N2 gas mixture. A customized high-pressure experimental set-up was built. Three temperature were tested: 15 °C, 25 °C and 38 °C at 150 bar. At such condition CO2 will be in the liquid and the supercritical phase respectively. The composition of the top and bottom streams where analyzed. The amount of CO2 in the top stream was the smallest at the supercritical condition. In addition, the purity of CO2 in the bottom stream was the highest at 38 °C and 150 bars, when CO2 is at the supercritical phase.

Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2053
Author(s):  
Dragutin Nedeljkovic

An increased demand for energy in recent decades has caused an increase in the emissions of combustion products, among which carbon-dioxide is the most harmful. As carbon-dioxide induces negative environmental effects, like global warming and the greenhouse effect, a decrease of the carbon-dioxide emission has emerged as one of the most urgent tasks in engineering. In this work, the possibility for the application of the polymer-based, dense, mixed matrix membranes for flue gas treatment was tested. The task was to test a potential decrease in the permeability and selectivity of a mixed-matrix membrane in the presence of moisture and at elevated temperature. Membranes are based on two different poly(ethylene oxide)-based polymers filled with two different zeolite powders (ITR and IWS). An additive of detergent type was added to improve the contact properties between the zeolite and polymer matrix. The measurements were performed at three different temperatures (30, 60, and 90 °C) under wet conditions, with partial pressure of the water equal to the vapor pressure of the water at the given temperature. The permeability of carbon-dioxide, hydrogen, nitrogen, and oxygen was measured, and the selectivity of the carbon-dioxide versus other gases was determined. Obtained results have shown that an increase of temperature and partial pressure of the vapor slightly increase both the selectivity and permeability of the synthesized membranes. It was also shown that the addition of the zeolite powder increases the permeability of carbon-dioxide while maintaining the selectivity, compared to hydrogen, oxygen, and nitrogen.


2011 ◽  
Vol 39 (8) ◽  
pp. 1729-1735 ◽  
Author(s):  
Tsuyoshi Kiyan ◽  
Takeshi Ihara ◽  
Suguru Kameda ◽  
Tomohiro Furusato ◽  
Masanori Hara ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Ming-Chi Wei ◽  
Yu-Chiao Yang ◽  
Show-Jen Hong

Oleanolic acid (OA) and ursolic acid (UA) were extracted fromHedyotis diffusausing a hyphenated procedure of ultrasound-assisted and supercritical carbon dioxide (HSC–CO2) extraction at different temperatures, pressures, cosolvent percentages, and SC–CO2flow rates. The results indicated that these parameters significantly affected the extraction yield. The maximal yields of OA (0.917 mg/g of dry plant) and UA (3.540 mg/g of dry plant) were obtained at a dynamic extraction time of 110 min, a static extraction time of 15 min, 28.2 MPa, and 56°C with a 12.5% (v/v) cosolvent (ethanol/water = 82/18, v/v) and SC–CO2flowing at 2.3 mL/min (STP). The extracted yields were then analyzed by high performance liquid chromatography (HPLC) to quantify the OA and UA. The present findings revealed thatH. diffusais a potential source of OA and UA. In addition, using the hyphenated procedure for extraction is a promising and alternative process for recovering OA and UA fromH. diffusaat high concentrations.


2014 ◽  
Vol 2014 ◽  
pp. 1-34 ◽  
Author(s):  
Mohammad Songolzadeh ◽  
Mansooreh Soleimani ◽  
Maryam Takht Ravanchi ◽  
Reza Songolzadeh

Increasing concentrations of greenhouse gases (GHGs) such as CO2in the atmosphere is a global warming. Human activities are a major cause of increased CO2concentration in atmosphere, as in recent decade, two-third of greenhouse effect was caused by human activities. Carbon capture and storage (CCS) is a major strategy that can be used to reduce GHGs emission. There are three methods for CCS: pre-combustion capture, oxy-fuel process, and post-combustion capture. Among them, post-combustion capture is the most important one because it offers flexibility and it can be easily added to the operational units. Various technologies are used for CO2capture, some of them include: absorption, adsorption, cryogenic distillation, and membrane separation. In this paper, various technologies for post-combustion are compared and the best condition for using each technology is identified.


1961 ◽  
Vol 39 (12) ◽  
pp. 1803-1809 ◽  
Author(s):  
I. G. Walker

Mice were adapted to living in an environment containing high concentrations of carbon dioxide by exposing them to an atmosphere in which the concentration of this gas was increased each day by 2% to a maximum of 10% or 20%. The animals were then exposed to an atmosphere of 100% oxygen at 75 p.s.i. (gauge). The time of onset of convulsions under these conditions was significantly greater than that in untreated mice. This result in conjunction with the findings of others was interpreted to mean that animals exposed to oxygen at high pressure suffer some degree of impairment to carbon dioxide transport which contributes to the production of symptoms.


Sign in / Sign up

Export Citation Format

Share Document