Preparation and Characterization of Polysulfone / Recam® Composite Membranes for Potable Water Production

2020 ◽  
Vol 1012 ◽  
pp. 79-83
Author(s):  
Priscila Anadão ◽  
Hélio Wiebeck

Polysulfone/ Recam® composite membranes were prepared via the wet-phase inversion method. The interactions between polysulfone and additive were revealed by Fourier-transformed infrared spectroscopy and atomic force microscopy. Material properties, such as thermal and mechanical ones, were also analyzed. The increase of rugosity by augmenting the Recam® content was depicted by AFM images. Infrared spectroscopy provided very useful information about the interactions between polymer chains and additive. Thermal stability and mechanical resistance showed dependence on the additive content, which were higher for higher contents.

2011 ◽  
Vol 675-677 ◽  
pp. 391-394
Author(s):  
Shuai Li ◽  
Yuan Gao ◽  
Lu Bai ◽  
Wei Qian Tian ◽  
Li Ping Zhang

Nanocrystalline cellulose (NCC) was used to improve hydrophilic property and permeability of polysulfone (PS) membrane. It was prepared from cellulose pulp by acid-catalyzed hydrolysis and high-pressure homogenization. The casting solution of a PS/NCC blend was obtained by adding NCC to a PS membrane solution and the composite membrane was prepared by phase-inversion method. In addition, the concentration of NCC was increased gradually from 0 wt% to 1.1 wt% during the preparation in order to examine the pure water flux and the retention of a bovine serum albumin (BSA). Simultaneously, the porosity and mean pore size of the membrane was detected and calculated. The result showed that the capacity for ultrafiltration was enhanced with appropriate NCC content. The membranes were also observed with atomic force microscopy (AFM) and scanning electron microscopy (SEM) to explore their porous structures.


Polymers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 671 ◽  
Author(s):  
Mozia ◽  
Grylewicz ◽  
Zgrzebnicki ◽  
Darowna ◽  
Czyżewski

Ultrafiltration (UF) polyethersulfone (PES) membranes were prepared by wet phase inversion method. Commercial halloysite nanotubes (HNTs) in the amount of 0.5–4 wt % vs PES (15 wt %) were introduced into the casting solution containing the polymer and N,N-dimethylformamide as a solvent. The morphology, physicochemical properties and performance of the membranes were characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM), zeta potential, porosity and contact angle analyses, as well as permeability measurements. Moreover, the antifouling properties of the membranes were evaluated during UF of a model solution of bovine serum albumin (BSA). The research revealed a positive influence of modification with HNTs on hydrophilicity, water permeability and antifouling properties of the PES membranes. The most significant improvement of permeability was obtained in case of the membrane containing 2 wt % of HNTs, whereas the highest fouling resistance was observed for 0.5 wt % HNTs content. It was found that a good dispersion of HNTs can be obtained only at loadings below 2 wt %. Based on the results a relation between severity of membrane fouling and surface roughness was proved. Moreover, an increase of the roughness of the modified membranes was found to be accompanied by an increase of isoelectric point values.


2017 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Qtaishat ◽  
M. Khayet ◽  
T. Matsuura ◽  
K.C. Khulbe

This study aims at further improvement and development of the novel hydro–phobic/–philic composite membranes which are made specifically for membrane distillation (MD). This was attempted by studying the effect of the casting conditions during the membrane preparation process by the phase inversion method. Two variables were chosen to study, which are the evaporation time before gelation and the gelation path temperature. Some of the membranes were allowed to evaporate at room temperature for 2 or 3 minutes to study the effect of evaporation time. The temperature of the gelation path was varied to 4°C, 20°C or 60°C in order to study the gelation path temperature effect. The prepared membranes were characterized using gas permeation test, measurement of the liquid entry pressure of water (LEPw), X–ray photoelectron spectroscopy (XPS), contact angle measurements and atomic force microscopy (AFM). The effects of the casting conditions on the membrane morphology were identified, which enabled us to link the membrane morphology to the membrane performance. The membranes were then tested for desalination of 0.5 M NaCl solution by direct contact membrane distillation (DCMD) and the results were compared to commercial polytetraflouroethylene (PTFE) membrane. It was found that the membrane which was prepared with no evaporation time produced better flux than those with evaporation time. Regarding the gelation path temperature; the membrane prepared with gelation path temperature of 4°C was better than those prepared with gelation path temperature of 20 or 60°C. It should be emphasized that the DCMD flux of the membranes prepared with no evaporation time or with a gelation path temperature of 4°C was superior to the commercial one. Furthermore, all the prepared membranes were tested successfully for the desalination application. In other words, no NaCl was detected in the permeate.


2013 ◽  
Vol 11 (4) ◽  
pp. 542-553 ◽  
Author(s):  
Mihaela Mândru ◽  
Constantin Ciobanu ◽  
Stelian Vlad ◽  
Maria Butnaru ◽  
Laurent Lebrun ◽  
...  

AbstractThis paper is focused on the preparation and physicochemical characterization of two poly(ester ether urethane)s with rifampicin in their matrix and different molar concentrations of urethane groups. The polyurethanes with rifampicin were processed as asymmetrical microporous membranes by a phase inversion method and characterized by attenuated total reflection — Fourier transform infrared (ATR-FTIR) spectroscopy and differential scanning calorimetry (DSC). The influence of the surface morphology in the release of drug compounds was analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM), contact angle, and water uptake. The release of rifampicin depends on the molar concentration of urethane groups and also on the surface morphology of the polyurethane membranes. The antibacterial activity was evaluated with S. Epidermidis RP 62 A and P. Aeruginosa ATCC 1544. Finally, the biocompatibility of the polyurethane membranes was studied with human dermal fibroblasts (HDF) to evaluate the potential biomedical applications.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1661
Author(s):  
Katarzyna Adamiak ◽  
Katarzyna Lewandowska ◽  
Alina Sionkowska

Collagen films are widely used as adhesives in medicine and cosmetology. However, its properties require modification. In this work, the influence of salicin on the properties of collagen solution and films was studied. Collagen was extracted from silver carp skin. The rheological properties of collagen solutions with and without salicin were characterized by steady shear tests. Thin collagen films were prepared by solvent evaporation. The structure of films was researched using infrared spectroscopy. The surface properties of films were investigated using Atomic Force Microscopy (AFM). Mechanical properties were measured as well. It was found that the addition of salicin modified the roughness of collagen films and their mechanical and rheological properties. The above-mentioned parameters are very important in potential applications of collagen films containing salicin.


2019 ◽  
Vol 19 (3) ◽  
pp. 650 ◽  
Author(s):  
Triyanda Gunawan ◽  
Retno Puji Rahayu ◽  
Rika Wijiyanti ◽  
Wan Norharyati Wan Salleh ◽  
Nurul Widiastuti

Mixed Matrix Membranes (MMMs) which consist of 0.3 wt.% Zeolite-Carbon Composite (ZCC) dispersed in BTDA-TDI/MDI (P84 co-polyimide) have been prepared through phase inversion method by using N-methyl-2-pyrrolidone (NMP) as a solvent. Membranes were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Thermogravimetric Analysis (TGA), and Fourier Transform Infrared (FTIR). Membrane performance was measured by a single gas permeation of CO2 and CH4. The maximum permeability of CO2 and CH4, which up to 12.67 and 6.03 Barrer, respectively. P84/ZCC mixed matrix membrane also showed a great enhancement in ideal selectivity of CO2/CH4 2.10 compared to the pure P84 co-polyimide membrane.


Sign in / Sign up

Export Citation Format

Share Document