Structural Characterization of a Biogenic Secretion Extracted from the Tendon or Ligament in Rabbits for Artificial Ligament Formation

2021 ◽  
Vol 1016 ◽  
pp. 786-791
Author(s):  
Toru Kuzumaki ◽  
Tatsuya Yamaguchi ◽  
Kengo Shimozaki ◽  
Junsuke Nakase ◽  
Kojun Torigoe

Thus far, our research group has conducted a basic investigation for the development of an artificial ligament, which was performed by utilizing a biogenic secretion that was derived from the Achilles tendon in mice; this was achieved using the film model method. In this study, an attempt has been made to derive a biogenic secretion from the Achilles tendon (tendon gel) and the medial collateral ligament (ligament gel) in rabbits. Subsequently, a discussion was carried out on the possibility of forming a ligament-like structure that was based on the structural, mechanical, and spectroscopic investigations. The tendon gel was successfully formed from a parent tendon that was preserved in vivo for 3, 5, 10, and 15 d. Further, an aligned collagen fiber emerged in the tendon gel, which was subjected to tension on every preservation date. Further, the mechanical behavior of the tendon gel specimens was classified in two groups. The values of the Young's modulus of the specimens preserved for 10 and 15 d were higher than those of the specimens preserved for 3 and 5 d. Within the range of this experimental condition, the aligned collagen fiber structure was formed by applying a tension of approximately greater than 0.05 N. Conversely, only a 10-d preservation period yielded a sufficient amount of ligament gel for the experiment. Notably, the volume of ligament gel was less than that of the tendon gel. In the ligament gel specimen without the synovial membrane, the collagen fiber structure was formed by applying a tension, which was similar to that experienced by the tendon gel specimen. However, the cross-linking and growth of collagen fibers in the ligament gel samples were insignificant as compared with those of the tendon gel samples.

2004 ◽  
Vol 37 (11) ◽  
pp. 1647-1653 ◽  
Author(s):  
John R. West ◽  
Natalia Juncosa ◽  
Marc T. Galloway ◽  
Gregory P. Boivin ◽  
David L. Butler

2014 ◽  
Vol 34 (2) ◽  
Author(s):  
Peter T. B. Bullock ◽  
David G. Reid ◽  
W. Ying Chow ◽  
Wendy P. W. Lau ◽  
Melinda J. Duer

NMR reveals numerous early and advanced glycation products, including a newly recognized ‘norpronyl-lysine,’ and cross links in solution, intact collagen and model systems. Solid state methods are directly applicable to in vitro and in vivo glycation pathway and product characterization.


2014 ◽  
Vol 775-776 ◽  
pp. 29-33 ◽  
Author(s):  
Karine Cappucio de Castro ◽  
Ivan Silva Prado ◽  
Moacyr Clemente Júnior ◽  
Sylma Carvalho Maestrelli ◽  
Neide Aparecida Mariano ◽  
...  

Several cements are used as biomaterials. Biopolymers such as chitosan and collagen exhibit excellent biocompatibility and can be used in the remodeling of bone tissue. The cement must have high mechanical strength and compatibility with original tissue. In this context, the objective of this study was to extract, characterize and cross-link collagen from bovine tendon, forlater associate it with chitosan and calcium phosphate to obtain cements for bone regeneration. Glutaraldehyde was used as cross-linker in 0.1, 0.5, 1.0 and 10% concentration. Infrared analysis confirmed the presence of functional groups characteristic of collagen, whereas the capacity of water absorption decreased with the increasing of cross-linking degree. Denaturation temperatures of collagen samples were obtained by Differential Scanning Calorimetry and Scanning Electron Microscopy showed the fiber structure characteristics of collagen, which were more organized for high degree of cross-linking samples.


Drug Delivery ◽  
2003 ◽  
Vol 10 (4) ◽  
pp. 269-275 ◽  
Author(s):  
M. Thilek Kumar ◽  
C. Rajeswari ◽  
J. Balasubramaniam ◽  
J. K. Pandit ◽  
S. Kant

1983 ◽  
Vol 209 (1) ◽  
pp. 107-115 ◽  
Author(s):  
H N Fernández ◽  
J M Delfino

Bovine somatotropin, at pH 8.5 in 0.02 M-Bicine [NN-bis-(2-hydroxyethyl)glycine]/0.09M-NaCl, showed by frontal analysis the characteristics of a rapid monomer-dimer equilibrium whose dissociation constant was estimated to be 6.6×10(-6)M. Reaction of the hormone with dimethyl suberimidate lead to covalent cross-linking of the dimeric species. Under the conditions chosen (0.4 mg of bifunctional imidate and 1 mg of protein/ml at room temperature for 1 h) the cross-linked dimers accounted for 26% of the total protein, and these were isolated by molecular sieving in 0.29M-NH3/0.12M-NaCl. Covalent stabilization greatly diminished the growth-promoting activity and the ability to interact with somatogenic sites in both rat liver in vivo and rabbit liver microsomal fractions. Evidence indicating a non-critical role for amino groups involved in the covalent cross-linking was provided by a nearly equivalent derivative obtained after reaction with 3,3′-dithiobispropionimidate, which had substantial hormonal activity upon cleavage of the disulphide links. Conversely, immunological reactivity as demonstrated by radioimmunoassay was not affected by cross-linking. Details of the least-squares procedure employed to evaluate the self-association equilibrium constant has been deposited as Supplement SUP 50115 (7 pages) with the British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies may be obtained on the terms indicated in Biochem. J. (1981) 193,5.


1989 ◽  
Vol 263 (1) ◽  
pp. 33-40 ◽  
Author(s):  
L A Haldosén ◽  
G Andersson ◽  
J A Gustafsson

The types of carbohydrate chains present in a rat liver lactogenic hormone-binding receptor species with an Mr of 82,000, and in its hormone-binding subunits with Mr values of 40,000 and 35,000, were characterized using carbohydrate-chain-cleaving enzymes and affinity cross-linking. The subcellular distribution of lactogenic hormone-binding species was studied in organelle-enriched fractions. The monomeric Mr-40,000 and Mr-35,000 species contain N-linked tri- or tetra-antennary complex and high-mannose chains respectively. The Mr-82,000 species exists in two forms, where the Mr-40,000 and Mr-35,000 subunits are each combined with unglycosylated and, with the technique used, unlabelled subunit(s). Studies with organelle-enriched fractions revealed that the Mr-35,000 species was found in an endoplasmic reticulum-enriched fraction. The Mr-40,000 species was the predominant monomeric binding species in Golgi/endosome- and plasma membrane-enriched fractions. It is suggested that the Mr-35,000 species is a precursor to the Mr-40,000 species. In lysosome/endosome- or lysosome-enriched fractions, a broad distribution in Mr (35,000-40,000) was characteristic of the hormone-binding species. The Mr-82,000 species was only found in a Golgi/endosome-enriched fraction. Labelling of endosome lactogen receptor by injection of 125I-labelled ovine prolactin in vivo and cross-linking yielded only the Mr-40,000 species. Thus, the Mr-40,000 and Mr-35,000 lactogenic hormone-binding species each appear to be combined with the unglycosylated receptor subunit(s) in the Golgi complex to form Mr-82,000 heterodimeric complexes.


Drug Delivery ◽  
2003 ◽  
Vol 10 (4) ◽  
pp. 269-275
Author(s):  
M. Thilek Kumar ◽  
C. Rajeswari ◽  
J. Balasubramaniam ◽  
J. K. Pandit ◽  
S. Kant

Sign in / Sign up

Export Citation Format

Share Document