Arc Technological Characteristics and Metal Transfer Behavior of Twin Electrode GMAW Deposition

2021 ◽  
Vol 1031 ◽  
pp. 147-153
Author(s):  
Sergey Elsukov ◽  
Ilya Zorin ◽  
Yuri Dubtsov ◽  
Vladimir I. Lysak ◽  
Dmitriy Priyatkin

Experiments proved that the arc voltage influences its spatial form and electrode metal transfer behavior characteristics during twin electrode GMAW with a single power source. Two specific arc forms were revealed for two corresponding types of metal transfer. The V-shaped arc exists on the melt drop common to the two consumable wires at voltage rate 24-27 V. The columnar shaped arc is formed due to voltage increase up to 34-36 V, which results in increased mobility of the cathode spot in the weld pool surface. As a result, the arc travels between the ends of two electrode wires, and the metal is transferred in drops of small size. It was demonstrated that for the common drop formation the gas mixture of 82% Ar+18% CO2 is preferable to pure argon. It decreases the surface tension on the boundary between the melted electrode metal and the vapor-gas mixture, resulting in the increased volume of the common drop. It was found that a consistent common arc from two electrode wires decreases dilution is made up 43%, which is 1,65 times more and improves the deposited metal formation quality.

2013 ◽  
Vol 545 ◽  
pp. 219-224 ◽  
Author(s):  
Pakpoom Jittavisuttiwong ◽  
Bovornchok Poopat

Helium is widely used as mixing with argon for a shielding gas in GMAW process of Aluminum in order to improve weld quality and increase heat transfer to the weld pool. It has been known that helium could affect metal transfer behavior; however, its behavior has not been well understood. In this study, an analysis of the metal transfer behavior in the GMAW of aluminum was studied. The main objective is to study the effect of Helium on metal transfer in two main regions, short circuit (low welding current region) and spray transfer (high current region). The composition of 5 types of shielding gases were pure argon, 75%Ar + 25%He, 50%Ar + 50%He, 25%Ar + 75%He and pure helium. The welding parameters were fixed at 90A/17.0V, 100A/18.2V, 140A/24.6V and 180A/27.6V. Aluminum plates were welded bead-on-plate in a flat position. The metal transfer behavior was analyzed by using acoustic signals and arc voltage signals. For the result, at low welding current of 90A and 100A with pure argon, short-circuit transfer mode was observed. Adding helium in gas mixture gave no effect in metal transfer mode in low welding current regions but the metal transfer rate was slightly increased. At high welding currents of 140A and 180A with pure argon, spray transfer mode was observed and when increasing helium in gas mixture resulted in changing from spray transfer to combined mode of spray-globular. In these high welding currents, adding helium in gas mixture resulted in decreasing the metal transfer rate since helium gas tended to promote globular metal transfer. Acoustic signal and arc voltage signal can be used effectively in determining modes of metal transfer.


2021 ◽  
Author(s):  
Mitsugu Yamaguchi ◽  
Rikiya Komata ◽  
Tatsuaki Furumoto ◽  
Satoshi Abe ◽  
Akira Hosokawa

Abstract Wire arc additive manufacturing (WAAM) is advantageous for fabricating large-scale metallic components, however, a high geometric accuracy as that of other AM techniques cannot be achieved because of the deposition process with a large layer. This study focuses on the WAAM process based on gas metal arc welding (GMAW). To clarify the influence of shielding gas used to protect a molten metal during fabrication on the geometric accuracy of the built part obtained via the GMAW-based WAAM process, the influence of the metal transfer behavior on the geometry and surface roughness of the fabricated structures was investigated via visualization using a high-speed camera when single and multilayer depositions were performed under different heat inputs and gases. However, when using Ar gas, the heat flux from an arc to the workpiece is relatively low, limiting the depth of the molten pool during welding. The effect of its characteristics on the stair steps that are inevitably produced on the side face of the multilayer structure in the WAAM process was verified, and for a heat input of 1.17 kJ/cm under Ar gas, a higher geometric accuracy of the multilayer structure was obtained without interlayer cooling. The short circuit between the metal droplet and the fabricated surface, where the molten pool is insufficiently formed, resulted in a hump formation. Further, the metal transfer under Ar gas reduced the surface irregularities on the fabricated structure.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5792
Author(s):  
Lei Xiao ◽  
Ding Fan ◽  
Jiankang Huang ◽  
Shinichi Tashiro ◽  
Manabu Tanaka

For gas metal arc welding (GMAW), increasing the welding current is the most effective way to improve welding efficiency. However, much higher current decreases the welding quality as a result of metal rotating-spray transfer phenomena in the high-current GMAW process. In this work, the external axial magnetic field (EAMF) was applied to the high-current GMAW process to control the metal transfer and decrease the welding spatters. A unified arc-droplet coupled model for high-current GMAW using EAMFs was built to investigate the metal rotating-spray transfer behavior. The temperature fields, flow fields in the arc, and droplet were revealed. Considering all the heat transferred to the molten metal, the Joule heat was found to be the dominant factor affecting the droplet temperature rise, followed by the anode heat. The conductive heat from the arc contributed less than half the value of the other two. Considering the EAMFs of different alternating frequencies, the arc constricting effects and controlled metal transfer behaviors are discussed. The calculated results agree well with the experimental high-speed camera observations.


2019 ◽  
Vol 33 (01n03) ◽  
pp. 1940040
Author(s):  
Yang Wang ◽  
Zhongyin Zhu ◽  
Guoqing Gou ◽  
Lin Peng ◽  
Yali Liu ◽  
...  

The cold metal transfer (CMT) with addition of pulses (CMT[Formula: see text]P) process is a new CMT welding method. This paper uses a high-speed camera and electrical signal synchronization acquisition system to perform a CMT[Formula: see text]P welding test on a 10 mm thick Q235 steel plate, and performs arc characteristic and droplet transfer behavior in the welding process. It has been founded that under relatively small currents and voltages, the CMT[Formula: see text]P transfer mode is a combination of a projected transfer mode with one droplet in the pulse period and a short circuit transfer mode during the CMT period. The process is stable with little spatter; at relatively large currents and voltages, the transition mode is the combination of pulse transfer, spray transfer and short circuit transfer. It results in one or more droplets that enter the pool both in pulse transfer in the spray transfer mode during the pulse period and in the short circuit transfer mode during the CMT period in a weld cycle.


2006 ◽  
Vol 20 (12) ◽  
pp. 996-1002
Author(s):  
B E Paton ◽  
V A Lebedev ◽  
Ya I Mikitin

1990 ◽  
Vol 4 (4) ◽  
pp. 257-260 ◽  
Author(s):  
B E Paton ◽  
A V Lebedev

2020 ◽  
Vol 143 (4) ◽  
Author(s):  
Kaiyuan Wu ◽  
Jiatong Zhan ◽  
Xuanwei Cao ◽  
Xiaobin Hong ◽  
Peimin Xie

Abstract The effects of pulse phase and pulse stage on the metal transfer characteristics in double-wire double pulse gas metal arc welding (DP-GMAW) of aluminum (Al) alloy were studied using high-speed camera images and current and voltage waveforms. In addition, the effects of various forces on dynamic metal transfer behavior were analyzed under different pulse phases and pulse stages. The results show that the spray transfer mode can be obtained in both the alternating pulse phase (APP) and synchronous pulse phase (SPP). The transfer pattern of the leading and trailing droplets is alternating in the APP, but changes to simultaneous metal transfer in the SPP, mainly owing to influence of the pulse phase on droplet growth. The transfer type is one drop double pulse (ODDP) during the strong pulse stage and one drop triple pulse (ODTP) during the weak pulse stage, regardless of the pulse phase. The pulse phase does, however, affect the Lorentz force between the leading and trailing droplets, causing droplet collision in the SPP, which results in a poorer weld bead appearance compared with in the APP. Finally, the droplet diameter was found to be similar during different pulse phases and pulse stages.


Sign in / Sign up

Export Citation Format

Share Document