Flexural Behaviour of Reinforced Geopolymer Concrete Incorporated with Hazardous Heavy Metal Waste Ash and Glass Powder

2022 ◽  
Vol 1048 ◽  
pp. 345-358
Author(s):  
A. Kumar Suresh ◽  
M. Muthukannan ◽  
A.D.K.B. Irene ◽  
K. Kumar Arun ◽  
A. Chithambar Ganesh

The flexural behavior of Incinerated Bio-Medical Waste Ash (IBWA) – Ground Granulated Blast Furnace Slag (GGBS) based Reinforced Geopolymer Concrete (RGPC) beams with Waste Glass Powder (WGP) as fine aggregate is explored in this research. The fine aggregate (M-Sand) is substituted by varying the waste glass powder as 0 percent, 5 percent, 10 percent, 15 percent, 20 percent, 25 percent, 30 percent, 35 percent, 40 percent, 45 percent, and 50 percent, and the mixture is cured under atmospheric curing. The impact of the WGP weight percentage on the flexural behavior of GPC beams is analyzed. The conduct of RGPC beams varies from that of ordinary Portland Concrete (OPC) beams, which is defined and examined. Deflection, ductility factor, flexural strength, and toughness index were measured as flexural properties for beams. In contrast to the reference beams, the RGPC beams containing 50% Waste Glass Powder as fine aggregate demonstrated a major increase in cracking resistance, serviceability, and ductility, according to the experimental finding. The RGPC beam without WGP ended in failure with a brittle manner whereas those beams with WGP encountered ductile failure. The RGPC beams' load ability improved by up to 50% as the weight percentage of WGP was enhanced.

2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Mavoori Hitesh Kumar ◽  
Nihar Ranjam Mahanta ◽  
Sandeep Samantaray ◽  
Nagarampalli Manoj Kumar

AbstractSeveral attempts upon inclusion of industrial waste materials such as fly ash, silica fume, GGBS, metakaolin and copper slag in concrete have already been experimented that exerted a significant impact on concrete with enhanced mechanical and improved durability properties. There were numerous authentic researches that reported the significance of steel fibers in strengthening the flexural property of concrete. The paper investigates the combined effect of waste glass powder (WGP) that has been utilized as a substitution for fine aggregate in varying percentages of 0%, 3%, 6%, 9%, 12% and 15% and further reinforcing it with recycled steel fibers (RSF), drawn from waste tires by volume of concrete. WGP was used as 0%, 3%, 6%, 9%, 12%, 15% by mass replacement of fine aggregate with four different volume fractions of recycled steel fiber (i.e., 0, 0.5, 1 and 1.5%), respectively. All proportions of concrete mixes were investigated to study the variations in compressive, flexural and split tensile strength with varied replacements levels of WGP along with various fractions of RSF for 7 and 28 days curing. A mix of 9% WGP exhibited the maximum compressive, flexural and split tensile strength. It was found that mechanical properties of concrete rose up to 9% replacement level of WGP and later declined. Also it was confirmed that increase in the amount of RSF further boosted the compressive and flexural behavior of concrete. Overall, an optimum concrete mix with 9% replacement of WGP, reinforced with 1% inclusion of RSF, reported the best performance compared to other mixes.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Arunachalam Suresh Kumar ◽  
Muthiah Muthukannan ◽  
Kadarkarai Arunkumar ◽  
Arunasankar Chithambar Ganesh ◽  
Rangaswamy Kanniga Devi

Structures ◽  
2019 ◽  
Vol 20 ◽  
pp. 510-518 ◽  
Author(s):  
Sheelan Mahmoud Hama ◽  
Akram Shakir Mahmoud ◽  
Mohamed Mahir Yassen

Author(s):  
Bakht Zamin ◽  
Hassan Nasir ◽  
Beenish Jehan Khan ◽  
Asim Farooq

Expansive soils are generally considered problematic due to undesirable geotechnical characteristics like expansion, shrinking, settlement, and heaving. Such soils have low shear strength which decreases after wetting or other physical aggravations. Subsequently, such soils need proper improvement before constructing a structure on them. Different industrial wastes have been used for the stabilization of weak soil in the past. In the current investigation, the impact of waste glass powder (WGP) on the strength and swelling characteristic of swelling soils have been assessed. The primary target of this examination was to research the utilization of waste glass powder in geotechnical applications for controlling the settlement and expanding qualities. For this reason, the local expansive soil of district Karak, Pakistan was selected and their engineering properties were assessed. The experimental work consists of conducting the consistency limits, California bearing ratio (CBR), specific gravity standard Procter tests.  The mentioned tests were carried out on both natural as well as modified specimens. For modification purposes, waste glass powder (WGP) was added in different proportions with the incremental rate of 4%,  for instant  0%,  4%, 8%, 12%, 16%, and 20%. The addition of waste glass powder greatly reduced the swelling properties of the tested soil and also improved the engineering characteristics. A maximum reduction in swelling was observed at 20% addition of waste glass powder. Similarly, the liquid limid also reduced, and the specific gravity and maximum dry density increased at optimum glass powder content.


Author(s):  
Harsh Vaghela

: In this examination an endeavor is made to contemplate the impact of waste glass power in Concrete utilizing waste glass, which is non biodegradable and not reasonable to landfill. This examination is done to utilize such waste materials into development enterprises with the goal that our current circumstance is free to one of the significant contamination created by the assembling ventures. The primary point of this investigation is to use of waste glass power as a halfway substitution of fine total. In this examination the point is to decide the level of glass substitution, bringing about ideal compressive strength. Substantial ostensible blend of M20 with various rates of Glass power has been assessed according to IS 2386(part IV) and IS 383. Squander glass powder was supplant with fine total in different rates, for example, 5%,10%,15%. Reference substantial blend is likewise made for relative reasons.


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 488
Author(s):  
Oumaima Nasry ◽  
Abderrahim Samaouali ◽  
Sara Belarouf ◽  
Abdelkrim Moufakkir ◽  
Hanane Sghiouri El Idrissi ◽  
...  

This study aims to provide a thermophysical characterization of a new economical and green mortar. This material is characterized by partially replacing the cement with recycled soda lime glass. The cement was partially substituted (10, 20, 30, 40, 50 and 60% in weight) by glass powder with a water/cement ratio of 0.4. The glass powder and four of the seven samples were analyzed using a scanning electron microscope (SEM). The thermophysical properties, such as thermal conductivity and volumetric specific heat, were experimentally measured in both dry and wet (water saturated) states. These properties were determined as a function of the glass powder percentage by using a CT-Meter at different temperatures (20 °C, 30 °C, 40 °C and 50 °C) in a temperature-controlled box. The results show that the thermophysical parameters decreased linearly when 60% glass powder was added to cement mortar: 37% for thermal conductivity, 18% for volumetric specific heat and 22% for thermal diffusivity. The density of the mortar also decreased by about 11% in dry state and 5% in wet state. The use of waste glass powder as a cement replacement affects the thermophysical properties of cement mortar due to its porosity as compared with the control mortar. The results indicate that thermal conductivity and volumetric specific heat increases with temperature increase and/or the substitution rate decrease. Therefore, the addition of waste glass powder can significantly affect the thermophysical properties of ordinary cement mortar.


Sign in / Sign up

Export Citation Format

Share Document