The Influencing Factors on the Production of Alcoholic Drinking from Jackfruit (Artocarpus heterophyllus L.)

2022 ◽  
Vol 1048 ◽  
pp. 476-484
Author(s):  
Vo Ngoc An ◽  
Van Thinh Pham ◽  
Vinh Long Do ◽  
Nguyen Quoc Duy ◽  
Thu Thuy Dang ◽  
...  

The large amount of jackfruit (Artocarpus heterophyllus Lam) harvested and their short use time caused many difficulties for the farmers. Fortunately, the high sugar content in jackfruit meat is a hopeful substance for wine production. This study aimed to consider the effect of yeast strains and their concentration on fermented jackfruit solution. Jackfruit juice with 14 °Brix is ​​fermented using 0.005 to 0.015% (w/v) Saccharomyces cerevisiae RV002, Mauri Instant Dry Yeast yeast under anaerobic conditions for 1 to 4 days at 30 °C. Survey samples were checked once a day to analyze the indicators. The functional report of the sugar in the fermentation time, shows that the higher incidence of yeast cultures and the initial sugar concentration inhibited yeast growth. The results showed that fermentation from jackfruit meat with 25 °Brix using Saccharomyces cerevisiae RV002 yeast with concentration of 0.01% for 3 days is the best to create a good quality with ethanol content 4,9% and characteristic aroma of jackfruit.

2018 ◽  
Vol 3 (4) ◽  
pp. 822-829
Author(s):  
Achmad Dairobbi ◽  
Irfan Irfan ◽  
Ismail Sulaiman

Buah kopi memiliki kandungan gula tinggi yang dapat diproses dengan cara fermentasi alami. Fermentasi kopi arabika bertujuan untuk mengurangi rasa pahit dan meningkatkan citarasa kopi. Senyawa-senyawa kompleks pada kopi fermentasi akan meningkatkan mutu kopi. Penelitian ini menggunakan metode survey purposive sampling, yaitu cara pengambilan sampel berdasarkan pertimbangan tertentu dan disesuaikan dengan ketersediaan produsen wine coffee. kadar air wine coffee rata-rata 9.08% (SNI), kadar abu rata-rata 4.5% (SNI) dan kadar alkohol 0%. Dari 6 sampel wine coffee yang di analisis, total skor terbaik uji deskriptif ditunjukkan pada sampel E yaitu 83,75 dan sampel F yaitu 83,00. Secara keseluruhan, 6 sampel wine coffee di Kabupaten Aceh Tengah terdapat perbedaan pada lamanya waktu fermentasi wine coffee yang dibutuhkan. Hal ini dibuktikan pada sampel E yaitu proses pembuatan wine coffee dilakukan dengan waktu fermentasi 7-10 hari pada suhu secara natural di dalam ruang tertutup. Abstract: Coffee fruit has a high sugar content that can be processed by natural fermentation. Fermented arabica coffee aims to reduce bitterness and improve coffee flavor. The complex compounds in fermented coffee will improve the quality of coffee. This research uses survey purposive sampling method, that is the way of sampling based on certain consideration and adjusted with the availability of wine coffee producer. Water wine coffee average 9.08% (SNI), average ash content of 4.5% (SNI) and alcohol content 0%. From 6 samples of analyzed wine coffee, the best total score of descriptive test is shown on sample E that is 83,75 and sample F is 83,00. Overall, 6 samples of wine coffee in Aceh Tengah District have differences in the duration of fermentation of the required coffee. This is evidenced in the sample E is the process of making wine coffee is done with a fermentation time of 7-10 days at a temperature naturally in a closed space.


Foods ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 658 ◽  
Author(s):  
Alice Agarbati ◽  
Laura Canonico ◽  
Francesca Comitini ◽  
Maurizio Ciani

Sulfites and sulfides are produced by yeasts in different amounts depending on different factors, including growth medium and specific strain variability. In natural must, some strains can produce an excess of sulfur compounds that confer unpleasant smells, inhibit malolactic fermentation and lead to health concerns for consumers. In organic wines and in sulfite-free wines the necessity to limit or avoid the presence of sulfide and sulfite requires the use of selected yeast strains that are low producers of sulfur compounds, with good fermentative and aromatic aptitudes. In the present study, exploiting the sexual mass-mating spores’ recombination of a native Saccharomyces cerevisiae strain previously isolated from grape, three new S. cerevisiae strains were selected. They were characterized by low sulfide and sulfite production and favorable aromatic imprinting. This approach, that occurs spontaneously also in nature, allowed us to obtain new native S. cerevisiae strains with desired characteristics that could be proposed as new starters for organic and sulfite-free wine production, able to control sulfur compound production and to valorize specific wine types.


2008 ◽  
Vol 26 (No. 5) ◽  
pp. 376-382 ◽  
Author(s):  
V. Petravić Tominac ◽  
K. Kovačević Ganić ◽  
D. Komes ◽  
L. Gracin ◽  
M. Banović ◽  
...  

Volatile aroma compounds production by two autochthonous <I>Saccharomyces cerevisiae</I> strains, isolated from Istria region, and three other yeast strains (<I>Saccharomyces bayanus</I> and two commercial <I>Saccharomyces cerevisiae</I> wine yeasts) was investigated on a small scale using synthetic VP4 medium and Graševina must at 12 and 20°C. The results obtained by gas chromatography analyses were compared with the aroma production properties of the native microflora, remaining after Graševina must sulphiting. In both media and at both temperatures, the wine yeasts investigated showed different metabolic profiles regarding the tested volatile aroma compounds, which should be taken in consideration for autochthonous wine production. Although the synthetic medium proved to be appropriate for the investigation of the fermentative properties, the determination of secondary aroma production by wine yeasts has to be conducted by must fermentation or possibly by fermentation of another synthetic medium whose composition would be more similar to must.


2020 ◽  
Vol 8 (3) ◽  
pp. 403 ◽  
Author(s):  
Maria del Carmen González-Jiménez ◽  
Jaime Moreno-García ◽  
Teresa García-Martínez ◽  
Juan José Moreno ◽  
Anna Puig-Pujol ◽  
...  

The aromatic metabolites derived from yeast metabolism determine the characteristics of aroma and taste in wines, so they are considered of great industrial interest. Volatile esters represent the most important group and therefore, their presence is extremely important for the flavor profile of the wine. In this work, we use and compare two Saccharomyces cerevisiae yeast strains: P29, typical of sparkling wines resulting of second fermentation in a closed bottle; G1, a flor yeast responsible for the biological aging of Sherry wines. We aimed to analyze and compare the effect of endogenous CO2 overpressure on esters metabolism with the proteins related in these yeast strains, to understand the yeast fermentation process in sparkling wines. For this purpose, protein identification was carried out using the OFFGEL fractionator and the LTQ Orbitrap, following the detection and quantification of esters with gas chromatograph coupled to flame ionization detector (GC-FID) and stir-bar sorptive extraction, followed by thermal desorption and gas chromatography-mass spectrometry (SBSE-TD-GC-MS). Six acetate esters, fourteen ethyl esters, and five proteins involved in esters metabolism were identified. Moreover, significant correlations were established between esters and proteins. Both strains showed similar behavior. According to these results, the use of this flor yeast may be proposed for the sparkling wine production and enhance the diversity and the typicity of sparkling wine yeasts.


2020 ◽  
Vol 246 (11) ◽  
pp. 2299-2307
Author(s):  
Monika Cioch-Skoneczny ◽  
Paweł Satora ◽  
Szymon Skoneczny ◽  
Aneta Pater

Abstract The international competitiveness of the wine sector and consumer demands for the unique wine styles pose challenges in improving the fermentation process. The basis of proper alcoholic fermentation is knowledge about how individual yeast strains interact with the aroma, taste and color of wine, what results in possibility to select species used as starter cultures. To use the value of non-Saccharomyces yeast strains in wine production and to minimize the possibility of wine deterioration, it is necessary to precisely recognize the yeast cultures present on the fruit of the vine and in grape must, as well as their metabolic properties. The aim of the study was to determine the oenological properties of yeasts isolated from spontaneously fermented grape musts obtained from cool climate grapes. For this purpose, Zweigelt grape must was fermented with yeast monocultures. Alcohol, extract, sugars, glycerol, total acidity and free amine nitrogen were analyzed in the obtained wines. Poor fermentation properties of yeast strains results in obtaining wines with relatively large amounts of residual sugars and low alcohol. A decrease in overall acidity was noted in sets with the participation of M. pulcherrima MG971264, while in other tests the opposite trend was observed. Although some microorganisms have the ability to assimilate organic acids found in wine, they are not able to carry out fermentation or they do it inefficiently. Solution to this problem may, therefore, be use of mixed cultures of noble and non-Saccharomyces yeast, what effectively reduce the concentration of organic acids, while not adversely affecting the organoleptic characteristics of the drink.


2020 ◽  
Vol 849 ◽  
pp. 53-57
Author(s):  
Chairul ◽  
Evelyn ◽  
Syaiful Bahri ◽  
Ella Awaltanova

Nipa palm (Nypa fruticans) spreads abundantly in the mangrove forests of eastern coast of Sumatera Island, Indonesia. Nipa palm sap can be used as a very high-gravity (VHG) substrate for fermentation. In this research, batch fermentation of nipa sap with initial sugar content of 262.713 mg/ml using immobilized Saccharomyces cerevisiae yeast cells was studied. Immobilization of the yeasts in Na-alginate by droplet method and addition of 0.2% v/v Tween 80 and 0.5g/l ergosterol to the immobilized cells were first carried out. Then, the effect of cells weight percentage (5, 10, 15, and 20% w/v) and fermentation time (24, 36, 48, 60, 72, 84, and 96 hrs) on the bioethanol production were investigated. After, the analysis of bioethanol concentration was investigated using Gas Chromatography. The bioethanol production increased with the fermentation time until reaching a maximum value at all cell weights. Except with the 20% w/v, this peak was followed by a decrease in the bioethanol production at cell weights of 5, 10, and 15% w/v. This phenomenon may be explained by degradation of bioethanol into acetic acid resulting in the decreased concentration at the end of fermentation. The formation of acetic acid was characterized by decreases in the pH values of the fermentation medium. On the contrary, the bioethanol level tended to increase until the end of fermentation with the immobilized yeast cells of 20% w/v. High number of available immobilized yeast cells at the end of fermentation, accumulation of bioethanol produced at earlier times, and no further conversion of bioethanol to acetic acid could be the reasons for this increase. The optimum conditions for bioethanol production were 20% w/v cell weight and 96 hr fermentation time, at bioethanol concentration of 17.57% v/v.


2010 ◽  
Vol 156-157 ◽  
pp. 266-271
Author(s):  
Da Wei Zhang ◽  
Wenbin Dong ◽  
Lei Jin ◽  
Jie Zhang ◽  
Yuan Chang Jin

Five preponderant yeast strains (YDJ01, YDJ02, YDJ03, YDJ04 and YDJ05) were isolated from the spontaneous fermentation pear wine as source of yeast for wine making from pear. Ethanol yield of YDJ05 was the highest and its using rapidity of the sugar was the most quickly. YDJ05 was identified as Saccharomyces cerevisiae and named Saccharomyces cerevisiae YDJ05. In addition, the fermentation dynamics of three yeast strains (Saccharomyces cerevisiae YDJ05, “Angle” yeast and Saccharomyces cerevisiae GIM2.39) were studied including single fermentation and associated fermentation. The fermentative behavior of three strains changed in association fermentations (Saccharomyces cerevisiae YDJ05 and “Angle” yeast, Saccharomyces cerevisiae YDJ05 and Saccharomyces cerevisiae GIM2.39). Results indicated that the qualities of pear wines made from association fermentations were better than that of single fermentations. The pear wine fermented associated by Saccharomyces cerevisiae YDJ05 and Saccharomyces cerevisiae GIM2.39 was the best in quality by sensory evaluation among all pear wines whose ethanol concentration was 10.3% (v/v). Saccharomyces cerevisiae YDJ05 and mai could be excellent potential source of strains.


Data, presented in part I of this communication, for the changes in air and in nitrogen in the rate of CO 2 production by potato tubers and in the contents of sugar, lactic acid, alcohol and other constituents, are analyzed and discussed. Certain features of the results indicate that in nitrogen a system producing lactic acid may be competing with systems in which either CO 2 or CO 2 and alcohol are formed, for a glycolytic intermediate, possibly pyruvic acid. Stoklasa (1904) observed the formation of lactic acid, together with a considerable amount of alcohol, in potatoes during anaerobiosis. In contrast, Kostytschew (1913) found no alcohol in low-sugar potatoes under anaerobic conditions, but a little alcohol in tubers of high sugar content. In our experiments, also with low-sugar potatoes, lactic acid but no alcohol was formed in the first phase of anaerobiosis; subsequently alcohol was produced in addition to lactic acid. Thus the results of previous workers are to a certain extent reconciled by the present study. When account is taken of the formation, under anaerobic conditions, of lactic acid and alcohol, as well as of CO 2 , a marked Pasteur effect is shown. The doubts expressed by Choudhury (1939) and Boswell & Whiting (1940), based solely on observations of CO 2 output, as to the existence of a Pasteur effect in potatoes are thus seen to be unjustified.


Molecules ◽  
2019 ◽  
Vol 24 (17) ◽  
pp. 3185 ◽  
Author(s):  
Łużny ◽  
Krzywda ◽  
Kozłowska ◽  
Kostrzewa-Susłow ◽  
Janeczko

Biotransformations were performed on eight selected yeast strains, all of which were able to selectively hydrogenate the chalcone derivatives 3-(2”-furyl)- (1) and 3-(2”-thienyl)-1-(2’-hydroxyphenyl)-prop-2-en-1-one (3) into 3-(2”-furyl)- (2) and 3-(2”-thienyl)-1-(2’-hydroxyphenyl)-propan-1-one (4) respectively. The highest efficiency of hydrogenation of the double bond in the substrate 1 was observed in the cultures of Saccharomyces cerevisiae KCh 464 and Yarrowia lipolytica KCh 71 strains. The substrate was converted into the product with > 99% conversion just in six hours after biotransformation started. The compound containing the sulfur atom in its structure was most effectively transformed by the Yarrowia lipolytica KCh 71 culture strain (conversion > 99%, obtained after three hours of substrate incubation). Also, we observed that, different strains of tested yeasts are able to carry out the bioreduction of the used substrate with different yields, depending on the presence of induced and constitutive ene reductases in their cells. The biggest advantage of this process is the efficient production of one product, practically without the formation of side products.


2012 ◽  
Vol 78 (6) ◽  
pp. 1987-1994 ◽  
Author(s):  
Kalliopi Rantsiou ◽  
Paola Dolci ◽  
Simone Giacosa ◽  
Fabrizio Torchio ◽  
Rosanna Tofalo ◽  
...  

ABSTRACTIn this study we investigated the possibility of usingCandida zemplinina, as a partner ofSaccharomyces cerevisiae, in mixed fermentations of must with a high sugar content, in order to reduce its acetic acid production. Thirty-fiveC. zemplininastrains, which were isolated from different geographic regions, were molecularly characterized, and their fermentation performances were determined. Five genetically different strains were selected for mixed fermentations withS. cerevisiae. Two types of inoculation were carried out: coinoculation and sequential inoculation. A balance between the two species was generally observed for the first 6 days, after which the levels ofC. zemplininastarted to decrease. Relevant differences were observed concerning the consumption of sugars, the ethanol and glycerol content, and acetic acid production, depending on which strain was used and which type of inoculation was performed. Sequential inoculation led to the reduction of about half of the acetic acid content compared to the pureS. cerevisiaefermentation, but the ethanol and glycerol amounts were also low. A coinoculation with selected combinations ofS. cerevisiaeandC. zemplininaresulted in a decrease of ∼0.3 g of acetic acid/liter, while maintaining high ethanol and glycerol levels. This study demonstrates that mixedS. cerevisiaeandC. zemplininafermentation could be applied in sweet wine fermentation to reduce the production of acetic acid, connected to theS. cerevisiaeosmotic stress response.


Sign in / Sign up

Export Citation Format

Share Document