flor yeast
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 16)

H-INDEX

11
(FIVE YEARS 3)

2021 ◽  
Vol 2 ◽  
Author(s):  
Emilien Peltier ◽  
Charlotte Vion ◽  
Omar Abou Saada ◽  
Anne Friedrich ◽  
Joseph Schacherer ◽  
...  

The identification of natural allelic variations controlling quantitative traits could contribute to decipher metabolic adaptation mechanisms within different populations of the same species. Such variations could result from human-mediated selection pressures and participate to the domestication. In this study, the genetic causes of the phenotypic variability of the central carbon metabolism of Saccharomyces cerevisiae were investigated in the context of the enological fermentation. The genetic determinism of this trait was found out by a quantitative trait loci (QTL) mapping approach using the offspring of two strains belonging to the wine genetic group of the species. A total of 14 QTL were identified from which 8 were validated down to the gene level by genetic engineering. The allelic frequencies of the validated genes within 403 enological strains showed that most of the validated QTL had allelic variations involving flor yeast specific alleles. Those alleles were brought in the offspring by one parental strain that contains introgressions from the flor yeast genetic group. The causative genes identified are functionally linked to quantitative proteomic variations that would explain divergent metabolic features of wine and flor yeasts involving the tricarboxylic acid cycle (TCA), the glyoxylate shunt and the homeostasis of proton and redox cofactors. Overall, this work led to the identification of genetic factors that are hallmarks of adaptive divergence between flor yeast and wine yeast in the wine biotope. These results also reveal that introgressions originated from intraspecific hybridization events promoted phenotypic variability of carbon metabolism observed in wine strains.


Fermentation ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 188
Author(s):  
Michail A. Eldarov ◽  
Daria A. Avdanina ◽  
Elena Ivanova ◽  
Maksim Y. Shalamitskiy ◽  
Tatiana N. Tanashchuk ◽  
...  

Flor strains of Saccharomyces cerevisiae represent a special group of yeasts used for producing biologically aged wines. We analyzed the collection of commercial wine and flor yeast strains, as well as environmental strains isolated from the surface of grapes growing in vineyards, for resistance to abiotic stresses, adhesive properties, and the ability to form a floating flor. The degree of resistance of commercial strains to ethanol, acetaldehyde, and hydrogen peroxide was generally not higher than that of environmental isolates, some of which had high resistance to the tested stress agents. The relatively low degree of stress resistance of flor strains can be explained both by the peculiarities of their adaptive mechanisms and by differences in the nature of their exposure to various types of stress in the course of biological wine aging and under the experimental conditions we used. The hydrophobicity and adhesive properties of cells were determined by the efficiency of adsorption to polystyrene and the distribution of cells between the aqueous and organic phases. Flor strains were distinguished by a higher degree of hydrophobicity of the cell surface and an increased ability to adhere to polystyrene. A clear correlation between biofilm formation and adhesive properties was also observed for environmental yeast isolates. The overall results of this study indicate that relatively simple tests for cell hydrophobicity can be used for the rapid screening of new candidate flor strains in yeast culture collections and among environmental isolates.


Metabolites ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 150
Author(s):  
Minami Ogawa ◽  
Jaime Moreno-García ◽  
Lucy C. M. Joseph ◽  
Juan C. Mauricio ◽  
Juan Moreno ◽  
...  

Gluconic acid consumption under controlled conditions by a Saccharomyces cerevisiae flor yeast was studied in artificial media. Gluconic acid was the sole carbon source and the compounds derived from this metabolism were tracked by endo-metabolomic analysis using a Gas Chromatography-Mass Spectrometry (GC-MSD) coupled methodology. After 6 days, about 30% of gluconic acid (1.5 g/L) had been consumed and 34 endo-metabolites were identified. Metabolomic pathway analysis showed the TCA cycle, glyoxylate-dicarboxylate, glycine-serine-threonine, and glycerolipid metabolic pathway were significantly affected. These results contribute to the knowledge of intracellular metabolomic fluctuations in flor yeasts during gluconic acid uptake, opening possibilities for future experiments to improve their applications to control gluconic acid contents during the production of fermented beverages.


2021 ◽  
Author(s):  
Emilien Peltier ◽  
Charlotte Vion ◽  
Omar Abou Saada ◽  
Anne Friedrich ◽  
Joseph Schacherer ◽  
...  

AbstractThe identification of natural allelic variations controlling quantitative traits could contribute to decipher metabolic adaptation mechanisms within different populations of the same species. Such variations could result from man-mediated selection pressures and participate to the domestication. In this study, the genetic causes of the phenotypic variability of the central carbon metabolism Saccharomyces cerevisiae were investigated in the context of the enological fermentation. Carbon dioxide and glycerol production as well as malic acid consumption modulate the fermentation yield revealing a high level of genetic complexity. Their genetic determinism was found out by a multi environment QTL mapping approach allowing the identification of 14 quantitative trait loci from which 8 of them were validated down to the gene level by genetic engineering. Most of the validated genes had allelic variations involving flor yeast specific alleles. Those alleles were brought in the offspring by one parental strain that is closely related to the flor yeast genetic group while the second parental strain is part of the wine group. The causative genes identified are functionally linked to quantitative proteomic variations that would explain divergent metabolic features of wine and flor yeasts involving the tricarboxylic acid cycle (TCA), the glyoxylate shunt and the homeostasis of proton and redox cofactors. Overall, this work led to the identification of genetic factors that are hallmarks of adaptive divergence between flor yeast and wine yeast in the wine biotope. These alleles can also be used in the context of yeast selection to improve oenological traits linked to fermentation yield.


2020 ◽  
Vol 92 ◽  
pp. 103553
Author(s):  
Marina Ruiz-Muñoz ◽  
Gustavo Cordero-Bueso ◽  
Francisco Benítez-Trujillo ◽  
Sergio Martínez ◽  
Fernando Pérez ◽  
...  

2020 ◽  
Vol 8 (8) ◽  
pp. 1209
Author(s):  
María del Carmen González-Jiménez ◽  
Teresa García-Martínez ◽  
Juan Carlos Mauricio ◽  
Irene Sánchez-León ◽  
Anna Puig-Pujol ◽  
...  

Sparkling wine is a distinctive wine. Saccharomyces cerevisiae flor yeasts is innovative and ideal for the sparkling wine industry due to the yeasts’ resistance to high ethanol concentrations, surface adhesion properties that ease wine clarification, and the ability to provide a characteristic volatilome and odorant profile. The objective of this work is to study the proteins in a flor yeast and a conventional yeast that are responsible for the production of the volatile compounds released during sparkling wine elaboration. The proteins were identified using the OFFGEL fractionator and LTQ Orbitrap. We identified 50 and 43 proteins in the flor yeast and the conventional yeast, respectively. Proteomic profiles did not show remarkable differences between strains except for Adh1p, Fba1p, Tdh1p, Tdh2p, Tdh3p, and Pgk1p, which showed higher concentrations in the flor yeast versus the conventional yeast. The higher concentration of these proteins could explain the fuller body in less alcoholic wines obtained when using flor yeasts. The data presented here can be thought of as a proteomic map for either flor or conventional yeasts which can be useful to understand how these strains metabolize the sugars and release pleasant volatiles under sparkling wine elaboration conditions.


2020 ◽  
Vol 8 (8) ◽  
pp. 1188
Author(s):  
Juan Antonio Porras-Agüera ◽  
Juan Carlos Mauricio ◽  
Jaime Moreno-García ◽  
Juan Moreno ◽  
Teresa García-Martínez

In this study, a first proteomic approach was carried out to characterize the adaptive response of cell wall-related proteins to endogenous CO2 overpressure, which is typical of second fermentation conditions, in two wine Saccharomyces cerevisiae strains (P29, a conventional second fermentation strain, and G1, a flor yeast strain implicated in sherry wine making). The results showed a high number of cell wall proteins in flor yeast G1 under pressure, highlighting content at the first month of aging. The cell wall proteomic response to pressure in flor yeast G1 was characterized by an increase in both the number and content of cell wall proteins involved in glucan remodeling and mannoproteins. On the other hand, cell wall proteins responsible for glucan assembly, cell adhesion, and lipid metabolism stood out in P29. Over-represented proteins under pressure were involved in cell wall integrity (Ecm33p and Pst1p), protein folding (Ssa1p and Ssa2p), and glucan remodeling (Exg2p and Scw4p). Flocculation-related proteins were not identified under pressure conditions. The use of flor yeasts for sparkling wine elaboration and improvement is proposed. Further research based on the genetic engineering of wine yeast using those genes from protein biomarkers under pressure alongside the second fermentation in bottle is required to achieve improvements.


2020 ◽  
Vol 8 (4) ◽  
pp. 523 ◽  
Author(s):  
Juan Antonio Porras-Agüera ◽  
Jaime Moreno-García ◽  
María del Carmen González-Jiménez ◽  
Juan Carlos Mauricio ◽  
Juan Moreno ◽  
...  

A correlation between autophagy and autolysis has been proposed in order to accelerate the acquisition of wine organoleptic properties during sparkling wine elaboration. In this context, a proteomic analysis was carried out in two industrial Saccharomyces cerevisiae strains (P29, conventional sparkling wine strain and G1, implicated in sherry wine elaboration) with the aim of studying the autophagy-related proteome and comparing the effect of CO2 overpressure during sparkling wine elaboration. In general, a detrimental effect of pressure and second fermentation development on autophagy-related proteome was observed in both strains, although it was more pronounced in flor yeast strain G1. Proteins mainly involved in autophagy regulation and autophagosome formation in flor yeast G1, and those required for vesicle nucleation and expansion in P29 strain, highlighted in sealed bottle. Proteins Sec2 and Sec18 were detected 3-fold under pressure conditions in P29 and G1 strains, respectively. Moreover, ‘fingerprinting’ obtained from multivariate data analysis established differences in autophagy-related proteome between strains and conditions. Further research is needed to achieve more solid conclusions and design strategies to promote autophagy for an accelerated autolysis, thus reducing cost and time production, as well as acquisition of good organoleptic properties.


2020 ◽  
Vol 8 (3) ◽  
pp. 403 ◽  
Author(s):  
Maria del Carmen González-Jiménez ◽  
Jaime Moreno-García ◽  
Teresa García-Martínez ◽  
Juan José Moreno ◽  
Anna Puig-Pujol ◽  
...  

The aromatic metabolites derived from yeast metabolism determine the characteristics of aroma and taste in wines, so they are considered of great industrial interest. Volatile esters represent the most important group and therefore, their presence is extremely important for the flavor profile of the wine. In this work, we use and compare two Saccharomyces cerevisiae yeast strains: P29, typical of sparkling wines resulting of second fermentation in a closed bottle; G1, a flor yeast responsible for the biological aging of Sherry wines. We aimed to analyze and compare the effect of endogenous CO2 overpressure on esters metabolism with the proteins related in these yeast strains, to understand the yeast fermentation process in sparkling wines. For this purpose, protein identification was carried out using the OFFGEL fractionator and the LTQ Orbitrap, following the detection and quantification of esters with gas chromatograph coupled to flame ionization detector (GC-FID) and stir-bar sorptive extraction, followed by thermal desorption and gas chromatography-mass spectrometry (SBSE-TD-GC-MS). Six acetate esters, fourteen ethyl esters, and five proteins involved in esters metabolism were identified. Moreover, significant correlations were established between esters and proteins. Both strains showed similar behavior. According to these results, the use of this flor yeast may be proposed for the sparkling wine production and enhance the diversity and the typicity of sparkling wine yeasts.


2020 ◽  
Vol 308 ◽  
pp. 125555 ◽  
Author(s):  
Rafael Martínez-García ◽  
Yenifer Roldán-Romero ◽  
Juan Moreno ◽  
Anna Puig-Pujol ◽  
Juan Carlos Mauricio ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document