Effect of Second Phase Particles on the Recrystallization Kinetics of a Cu-Cr-Zr Alloy

1993 ◽  
Vol 113-115 ◽  
pp. 257-262
Author(s):  
M.A. Morris ◽  
M. Leboeuf ◽  
David G. Morris
2014 ◽  
Vol 685 ◽  
pp. 27-30
Author(s):  
Yan Liu ◽  
Kai Wang ◽  
Yang Liu ◽  
Jian Ming Wang

A new technology to obtain a fine-structured and high-toughness HAZ of HSLA steel for high heat input welding is developed using metallurgical thermodynamics, physical chemistry of metallurgy and material processing methods synthetically in this study. A kind of HSLA steel is designed in this experiment. The thermal stability second phase particles which would not be dissolved or aggregated at high temperature will be expected by means of adding calcium and magnesium into the steel in the form of Si-Ca alloy and Mg-Zr alloy, respectively. The effect of calcium and magnesium addition on the morphology and distribution of the inclusions in the cast microstructure of HSLA steel was analysed. The results show that the distribution of the inclusions is more dense and uniform with respect to the raw steel, and the size of the inclusions is smaller than the ones in the raw steel after adding Ca and Mg elements. Ca and Mg elements can accelerate the nucleation of the inclusions. The nucleation rate of the Mg element is relatively higher. The number of the inclusions in the adding Mg steel decrease more slowly relative to the adding Ca steel with the extension of the steelmaking time.


2016 ◽  
Vol 35 (10) ◽  
pp. 1005-1011
Author(s):  
T. J. Pan ◽  
J. Chen ◽  
Y. X. He ◽  
W. Wei ◽  
J. Hu

AbstractThe oxidation behavior of grain-refined Cu–7.0 Cr alloy (GR Cu–7.0 Cr) in air at 973–1,073 K was investigated in comparison with normal casting Cu–7.0 Cr alloy (CA Cu–7.0 Cr). The oxidation of CA Cu–7.0 Cr alloy nearly followed parabolic law, while the oxidation kinetics of GR Cu–7.0 Cr slightly deviated from parabolic law. Both alloys almost produced multi-layered scales consisting of the outer layer of CuO and the inner layer of mixed Cr2O3 and Cu2O oxides plus internal oxidation zones of chromium. The grain-refined Cu–7.0 Cr alloy produced a more amount of Cr2O3 in the inner layer of the scale, and thus was oxidized at much lower oxidation rate than that of CA Cu–7.0 Cr with normal grain size. The experimental results indicated that the differences in oxidation behavior between two alloys may be ascribed to the different size and spatial distribution of the second-phase particles and the reactive component contents in localized zone.


2018 ◽  
Vol 8 (1) ◽  
pp. 110-114 ◽  
Author(s):  
I. A. Faizov ◽  
R. R. Mulyukov ◽  
D. A. Aksenov ◽  
S. N. Faizova ◽  
N. V. Zemlyakova ◽  
...  

Author(s):  
Angus Porter ◽  
Louise Makin ◽  
Brian Ralph

Much of the hardening of high strength aluminium alloys containing zirconium results from the precipitation of the metastable γ' (Al3Zr) phase (Ll2 structure, cube/cube related to the matrix). There exists some controversy in the literature as to the magnitude of the matrix (γ)-γ' misfit in Al-Zr alloys; the values reported range from 1% down to rather less than half this figure. In the present paper, the use of moire fringe imaging to study mismatch and misorientation between the γ and γ' lattice in a binary Al-Zr alloy will be considered. The advantages of this technique for the study of small second-phase particles are three-fold. The information obtained is specific to a single particle; the exact nature of the particle/matrix interface is unimportant, as long as the two lattices exhibit nearly coincident diffraction maxima; and mismatch and misorientation of particular sets of lattice planes can be determined from a single image.


2015 ◽  
Vol 231 ◽  
pp. 1-10
Author(s):  
Magdalena M. Miszczyk ◽  
Henryk Paul

Early stages of recrystallization were observed for the Al-Mn-Mg-Zr(Sc) aluminium alloy containing a fine second phase particles. The samples were plane strain compressed to 40%, 60% and 83% and then annealed. The processes of the recovery and the nucleation of new grains were analysed with the use of scanning electron microscopy equipped with a high resolution electron backscattered diffraction facility. The deformed alloy contained a structure of flat grains situated parallel to the compression plane. After annealing, the structure coarsened. However, the growth of the new grains was strongly hindered by the presence of particles, and the elongated shape of the deformed grains was conserved up to the later stages of recrystallization. In the case ofthe samples deformed up to 40%, the structure was transformed by the mechanism of continuous recrystallization, whereas, in the case of the samples deformed up to 60% or 83%, both mechanisms- of continuous and discontinuous recrystallization - were valid. A particular role in the rise of thenuclei and the structure spheroidization is attributed to the thermally activated migration of the low-angle grain boundaries and the movement of the dislocations stored inside the cells. This leads to an increase of the misorientation angles across the pre-existing low-angle boundaries.


2007 ◽  
Vol 558-559 ◽  
pp. 1189-1194
Author(s):  
Yoshihiro Suwa ◽  
Yoshiyuki Saito ◽  
Hidehiro Onodera

The effects of second-phase particles on the recrystallization kinetics in two-dimensional polycrystalline structures were investigated. Numerical simulations of recrystallization were performed by coupling the unified subgrain growth theory with a phase-field methodology. Simple assumptions based on experimental observations were utilized for preparing initial microstructures. The following results were obtained: (1) The presence of second-phase particles retarded recrystallization speeds. (2) If the mean subgrain size was small enough recrystallized region covered whole system for various values of the particle fraction, f. (3) On the other hand, if the mean subgrain size was not small enough the progress of recrystallization was frozen at some point.


Sign in / Sign up

Export Citation Format

Share Document