Finite Element Method in Powdered Metal Compaction Processes

2004 ◽  
Vol 449-452 ◽  
pp. 109-112
Author(s):  
B.D. Ko ◽  
D.H. Jang ◽  
Hyoung Jin Choi ◽  
Joong Yeon Lim ◽  
Beong Bok Hwang

A finite element method for the compaction process of metallic powder is introduced in the present work. Basic equations for the finite element formulation are summarized. A yield criterion, which is modified by describing asymmetric behavior of powder metal compacts, is introduced and applied to various classes of powdered metal compaction processes. Three material parameters are involved in the yield function and determined from the behavior of sintered powder compacts as a function of relative density. The FEM simulation includes single-action and double-action pressings of solid cylinders as well as cylindrical rings of relatively long parts (Class II parts). The compaction process for multi-level flanged components (Class III and Class IV parts) is also analyzed. The predicted results from simulations are summarized in terms of density distributions within the compacts and pressure distributions exerted on the die-wall interfaces, and also in terms of effectiveness with increased relative motions with in the compacts and the effect of various compaction schemes of combination of punch motions. Results obtained in the multi-level compaction process are discussed in terms of average relative density distributions at each height.

2005 ◽  
Vol 475-479 ◽  
pp. 3251-3254
Author(s):  
Joong Yeon Lim ◽  
Jung Min Seo ◽  
Beong Bok Hwang

A finite element method for the compaction process of metallic powder is introduced in the present work. Basic equations for the finite element formulation are summarized. A yield criterion, which is modified by describing asymmetric behavior of powder metal compacts, is introduced and applied to a certain class of powdered metal compaction processes. Two-level flanged solid cylindrical components are analyzed in three different compacting methods with three different compact geometries. The simulation results are summarized in terms of relative density distribution within compacts, pressure distributions along the die-wall interfaces, load-stroke relationships of each punch, average densities as functions of height and radius of the compact, respectively, and average densities of pin and head. For each compact from different compacting method, the best pressing method is chosen for uniform density distributions within the compact.


2020 ◽  
Vol 63 (1) ◽  
pp. 1-20
Author(s):  
S. J. van den Boom ◽  
J. Zhang ◽  
F. van Keulen ◽  
A. M. Aragón

AbstractDuring design optimization, a smooth description of the geometry is important, especially for problems that are sensitive to the way interfaces are resolved, e.g., wave propagation or fluid-structure interaction. A level set description of the boundary, when combined with an enriched finite element formulation, offers a smoother description of the design than traditional density-based methods. However, existing enriched methods have drawbacks, including ill-conditioning and difficulties in prescribing essential boundary conditions. In this work, we introduce a new enriched topology optimization methodology that overcomes the aforementioned drawbacks; boundaries are resolved accurately by means of the Interface-enriched Generalized Finite Element Method (IGFEM), coupled to a level set function constructed by radial basis functions. The enriched method used in this new approach to topology optimization has the same level of accuracy in the analysis as the standard finite element method with matching meshes, but without the need for remeshing. We derive the analytical sensitivities and we discuss the behavior of the optimization process in detail. We establish that IGFEM-based level set topology optimization generates correct topologies for well-known compliance minimization problems.


2016 ◽  
Vol 138 (6) ◽  
Author(s):  
L. Zhang ◽  
J. M. Zhao ◽  
L. H. Liu

A new stabilized finite element formulation for solving radiative transfer equation is presented. It owns the salient feature of least-squares finite element method (LSFEM), i.e., free of the tuning parameter that appears in the streamline upwind/Petrov–Galerkin (SUPG) finite element method. The new finite element formulation is based on a second-order form of the radiative transfer equation. The second-order term will provide essential diffusion as the artificial diffusion introduced in traditional stabilized schemes to ensure stability. The performance of the new method was evaluated using challenging test cases featuring strong medium inhomogeneity and large gradient of radiative intensity field. It is demonstrated to be computationally efficient and capable of solving radiative heat transfer in strongly inhomogeneous media with even better accuracy than the LSFEM, and hence a promising alternative finite element formulation for solving complex radiative transfer problems.


Author(s):  
Robert J. Bernhard ◽  
John E. Huff

Abstract Energy flow analysis methods, particularly as implemented using the finite element method, are useful as design techniques for high frequency structural-acoustic applications. In this paper, the derivation of energy flow analysis techniques are summarized. Particular attention is given to the specification of joint models for situations where there is a discontinuity in either geometric properties or material properties. The finite element formulation of this approach is also summarized. A case study is included to illustrate the utility of the method as a design technique.


Author(s):  
Liang Wang ◽  
Xue Zhang ◽  
Filippo Zaniboni ◽  
Eugenio Oñate ◽  
Stefano Tinti

AbstractNotwithstanding its complexity in terms of numerical implementation and limitations in coping with problems involving extreme deformation, the finite element method (FEM) offers the advantage of solving complicated mathematical problems with diverse boundary conditions. Recently, a version of the particle finite element method (PFEM) was proposed for analyzing large-deformation problems. In this version of the PFEM, the finite element formulation, which was recast as a standard optimization problem and resolved efficiently using advanced optimization engines, was adopted for incremental analysis whilst the idea of particle approaches was employed to tackle mesh issues resulting from the large deformations. In this paper, the numerical implementation of this version of PFEM is detailed, revealing some key numerical aspects that are distinct from the conventional FEM, such as the solution strategy, imposition of displacement boundary conditions, and treatment of contacts. Additionally, the correctness and robustness of this version of PFEM in conducting failure and post-failure analyses of landslides are demonstrated via a stability analysis of a typical slope and a case study on the 2008 Tangjiashan landslide, China. Comparative studies between the results of the PFEM simulations and available data are performed qualitatively as well as quantitatively.


2019 ◽  
Vol 16 (05) ◽  
pp. 1840010 ◽  
Author(s):  
Yuki Onishi

A new type of smoothed finite element method (S-FEM), F-barES-FEM-T4, is demonstrated in static large deformation elastoplastic cases. F-barES-FEM-T4 combines the edge-based S-FEM (ES-FEM) and the node-based S-FEM (NS-FEM) for 4-node tetrahedral (T4) elements with the aid of the F-bar method in order to resolve the major issues of Selective ES/NS-FEM-T4. As well as most of the other S-FEMs, F-barES-FEM-T4 inherits pure displacement-based formulation and thus has no increase in DOF. Moreover, the cyclic smoothing procedure introduced in F-barES-FEM-T4 is effective to adjust the smoothing level so that pressure checkerboarding (oscillation) is suppressed reasonably. Some examples of static large deformation analyses for elastoplastic materials proof the excellent performance of F-barES-FEM-T4 in contrast to the conventional hybrid T4 element formulation.


2013 ◽  
Vol 1580 ◽  
Author(s):  
Max Larner ◽  
Lilian P. Dávila

ABSTRACTLightweight porous metallic materials are generally created through specialized processing techniques. Their unique structure gives these materials interesting properties which allow them to be used in diverse structural and insulation applications. In particular, highly porous Al structures (Al foams) have been used in aircraft components and sound insulation; however due to the difficulty in processing and random nature of the foams, they are not well understood and thus they have not yet been utilized to their full potential. The objective of this project was to determine whether a relationship exists between the relative density (porous density/bulk density) and the mechanical properties of porous Al structures. For this purpose, a combination of computer simulations and experiments was pursued to better understand possible relationships. A Finite Element Method (FEM)-based software, COMSOL Multiphysics 4.3, was used to model the structure and to simulate the mechanical behavior of porous Al structures under compressive loads ranging from 1-100 MPa. From these simulated structures, the maximum von Mises stress, volumetric strain, and other properties were calculated. These simulation results were compared against data from compression experiments performed using the Instron Universal Testing Machine (IUTM) on porous Al specimens created via a computernumerically-controlled (CNC) mill. CES EduPack software, a materials design program, was also used to estimate the mechanical properties of porous Al and open cell foams for values not available experimentally, and for comparison purposes. This program allowed for accurate prediction of the mechanical properties for a given percent density foam, and also provided a baseline for the solid Al samples tested. The main results from experiments were that the Young’s moduli (E) for porous Al samples (55.8% relative density) were 15.9-16.6 GPa depending on pore diameter, which is in good agreement with the CES EduPack predictions; while the compressive strengths (σc) were 155-185 MPa, higher than those predicted by CES EduPack. The results from the FEM simulations using 3D models (55.8% relative density) revealed the onset of yielding at 13.5-14.0 MPa, which correlates well with CES EduPack data. Overall results indicated that a combination of experiments and FEM simulations can be used to calculate structure-property relationships and to predict yielding and failure, which may help in the pursuit of simulation-based design of metallic foams. In the future, more robust modeling and simulation techniques will be explored, as well as investigating closed cell Al foams and different porous geometries (nm to micron). This study can help to improve the current methods of characterizing porous materials and enhance knowledge about their properties for alternative energy applications, while promoting their design through integrated approaches.


Sign in / Sign up

Export Citation Format

Share Document