Study on Thermal Shock Resistance of Insulated Metal Substrate

2005 ◽  
Vol 475-479 ◽  
pp. 1737-1742
Author(s):  
Liquan Guo ◽  
Yang Liu ◽  
Ju Sheng Ma

Anodizing technique was applied to prepare insulated metal substrates (IMS) for BGA packaging. “Ideal” IMS used anodic film of aluminum as the insulating layer instead of epoxy, which led to higher thermal conductivity. But the thermal shock resistance of IMS is poor because of the great difference of thermal expansion coefficient between aluminum and its anodic film. In this study, different anodizing processes of aluminum were analyzed. The parameters, which can affect the thermal shock resistance of IMS, especially the surface temperature of Al substrate, were studied. The anodic film obtained with the optimized parameters of anodizing process had excellent performance, such as the resistivity was over 1013Ω·cm, the breakdown voltage was higher than 600V, and the most important thing was that it could resist thermal shocks between room temperature and 300°C. Then BGA packaging was successfully performed based on this IMS.

2013 ◽  
Vol 634-638 ◽  
pp. 2358-2361
Author(s):  
Jun Cong Wei ◽  
Li Rong Yang

The effects of Si3N4 addition on the room temperature physical properties and thermal shock resistance properties of corundum based refractory castables were investigated using brown corundum, white corundum and alumina micropowder as the starting materials and pure calcium aluminate as a binder. The phase composition, microstructure, mechanical properties of corundum based castables were investigated by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that as the increase in Si3N4 addition, the bulk density decreased and apparent porosity increased, the cold strength deduced. However, the residual strength rate increased. That is, the thermal shock resistance was improved. This is because even though the introduction of Si3N4 inhibited the sintering of material and deduced the compactness, microcracks were produced in the materials due to a difference in thermal expansion coefficient. So the thermal shock resistance of corundum based castable was improved.


2012 ◽  
Vol 509 ◽  
pp. 240-244
Author(s):  
Li Ying Tang ◽  
Xi Cheng ◽  
Ping Lu ◽  
Fang Yue

Abstract: Cordierite–alumina ceramics were prepared with the raw materials of cordierite and α-alumina powder, and TiO2,CuO and MgO were added as composite additives. The effect of MgO/ CuO ratios on the microstructure, thermal conductivity and thermal shock resistance of cordierite–alumina ceramics were researched by X-ray diffraction, scanning electron microscopy and laser flash analyzer; the bulk density and the porosity of cordierite – alumina ceramics were measured. The results show that with increasing of MgO/CuO ratios, the bulk density and thermal conductivity increase firstly and then decrease, and have a minimum with 0.4wt% MgO and 0.667 MgO/CuO; and the porosity of ceramics decreases firstly and then increases and has a maximum with 0.4wt% MgO and 0.667 MgO/CuO;There are little changes in the size of the grain of the ceramics, and a small amount of magnesium aluminate spinel precipitate; the thermal shock resistance performance of the ceramics is developed with the increasing of MgO/CuO ratios.


2011 ◽  
Vol 199-200 ◽  
pp. 1928-1931 ◽  
Author(s):  
Hong Ji Yin ◽  
Tao Zhang ◽  
Ai Jun Wu ◽  
Jin Xiang Wang

The samples were prepared using Cr2O3 micropowder, TiO2 micropowder and m-ZrO2 micropowder as main starting material, polyvinyl alcohol as binder, by a series of processes such as pulping, spraying granulation, machine moulding and cold isostatic pressing, and sintering at 1 500°С for 3 h in nitrogen protected atmosphere furnace (oxygen partial pressure was 10 Pa). Then thermal shock resistance of the samples was tested by wind quenching. Effect of m-ZrO2 (2%-5% in mass) on sintering behavior and thermal shock resistance of Cr2O3 material was investigated. The results show that m-ZrO2 can accelerate the sintering of Cr2O3 material, but excess 2 wt% m-ZrO2 doesn’t work; m-ZrO2 can obviously improve thermal shock resistance of Cr2O3 material, sample containing 3 wt% m-ZrO2 has 34 wind quenching cycles from 1 150°С to room temperature, and sample without m-ZrO2 only has 11 cycles.


2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Habib Sahlaoui ◽  
Kamel Makhlouf ◽  
Habib Sidhom

The effect of the glazed layer and firing conditions (temperature and duration) on the thermal shocks behavior of tableware porcelains has been studied. Two types of glazed layers and three firing conditions, used industrially in the commercial porcelains manufacture, are used in this investigation. Repeated thermal shock tests showed that the glazed layer with higher alumina/silica ratio is more resistant to thermal shocks and that the slow firing cycle, even at a relatively low temperature, is very beneficial for the thermal shock resistance of the porcelain matrix. Three-point bending tests showed that the crazing phenomenon, which affects the glazed layers as well as the porcelain matrix, does not affect significantly the mechanical resistance of these materials.


Author(s):  
J.H. Mohmmed

Purpose: A new high thermal stability single layer glass–ceramic coating system designing for applied on various grade of steel alloy has been developed in this work. Design/methodology/approach: The thermal shock resistance, thermal conductivity and thermal expansion of the coating system were evaluated by using suitable standard tests. Some crystalline agents (Lithium oxide Li2O, Titanium oxide TiO2, Zircon ZrSiO4 and Feldspar CaO∙Al2O3∙2SiO2) were add at constant ratio 6% to coating system to evaluate their effects on the resultant coatings. Findings: The results indicate the suitability of these coatings for protection of metal substrate. Also the results show that the properties of resultant coating were hardly affected by composition and concentration of crystalline agent. Research limitations/implications: Coating with lithium oxide has the lowest thermal expansion, which means the highest thermal shock resistance. While, values of thermal conductivity were too close for all types of coating. Originality/value: Generally, the resultant coating properties have been enhanced in all cases; this is associated with the introduce the crystalline agent which lead to the formation of a complex network of crystalline phases.


Sign in / Sign up

Export Citation Format

Share Document