Influence of Silicon Nitride on Properties of Corundum Based Castable

2013 ◽  
Vol 634-638 ◽  
pp. 2358-2361
Author(s):  
Jun Cong Wei ◽  
Li Rong Yang

The effects of Si3N4 addition on the room temperature physical properties and thermal shock resistance properties of corundum based refractory castables were investigated using brown corundum, white corundum and alumina micropowder as the starting materials and pure calcium aluminate as a binder. The phase composition, microstructure, mechanical properties of corundum based castables were investigated by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that as the increase in Si3N4 addition, the bulk density decreased and apparent porosity increased, the cold strength deduced. However, the residual strength rate increased. That is, the thermal shock resistance was improved. This is because even though the introduction of Si3N4 inhibited the sintering of material and deduced the compactness, microcracks were produced in the materials due to a difference in thermal expansion coefficient. So the thermal shock resistance of corundum based castable was improved.

2002 ◽  
Vol 16 (06n07) ◽  
pp. 1047-1051
Author(s):  
JIANPING MA ◽  
ZHIMING CHEN ◽  
GANG LU ◽  
MINGBIN YU ◽  
LIANMAO HANG ◽  
...  

Intense photoluminescence (PL) has been observed at room temperature from the polycrystalline SiC samples prepared from carbon-saturated Si melt at a temperature ranging from 1500 to 1650°C. Composition and structure of the samples have been confirmed by means of X-ray photoelectron spectroscopy, X-ray diffraction and scanning electron microscopy. PL measurements with 325 nm UV light excitation revealed that the room temperature PL spectrum of the samples consists of 3 luminescent bands, the peak energies of which are 2.38 eV, 2.77 eV and 3.06 eV, respectively. The 2.38 eV band is much stronger than the others. It is suggested that some extrinsic PL mechanisms associated with defect or interface states would be responsible to the intensive PL observed at room temperature.


2011 ◽  
Vol 295-297 ◽  
pp. 2309-2313
Author(s):  
Xin Liu ◽  
Dian Li Qu ◽  
Zhi Jian Li

This paper deeply studied the limitation of evaluating the thermal shock resistance of Al2O3-SiO2 refractory by measuring Strength Loss Rate (SLR). By means of supersonic, X-ray diffraction (XRD), the results were drawn as followed.1)After the thermal shock experiment for mullite based A-S refractory, which were composed by mullite and corundum, the supersonic velocity slowed down as it going through the sample while the cold crushing strength abnormally increased at initial state.2) The strength increased remarkably with the ascending of mullite fraction.3)It is inadequate to evaluate the thermal shock resistance of mullite based A-S refractory by strength loss rate.


2019 ◽  
Vol 33 (03) ◽  
pp. 1950027 ◽  
Author(s):  
Jiaxiang Chen ◽  
Xiaopeng Jia ◽  
Yuewen Zhang ◽  
Haiqiang Liu ◽  
Baomin Liu ◽  
...  

The polycrystalline skutterudite [Formula: see text] were successfully synthesized from 1.5 GPa to 3.5 GPa by the high pressure and high temperature (HPHT) method. Negative Seebeck coefficient confirmed the n-type conductivity of all samples. The phase compositions of samples were investigated by X-ray diffraction (XRD) and the microstructures were observed by scanning electron microscopy (SEM). It was found that the grains appeared smaller and the grain boundaries became more abundant when pressures were higher. We measured the electrical properties from room temperature to 723 K. Both the electrical resistivity and absolute value of Seebeck coefficient increase with the increasing synthetic pressure. At 723 K, the maximum power factor of [Formula: see text] was obtained for the sample synthesized under 3 GPa. The maximum ZT value of 0.61 was reached by [Formula: see text] synthesized under 3 GPa and measured at 723 K.


2017 ◽  
Vol 2017 ◽  
pp. 1-4 ◽  
Author(s):  
Swati Arora ◽  
Vivek Jaimini ◽  
Subodh Srivastava ◽  
Y. K. Vijay

Bismuth telluride has high thermoelectric performance at room temperature; in present work, various nanostructure thin films of bismuth telluride were fabricated on silicon substrates at room temperature using thermal evaporation method. Tellurium (Te) and bismuth (Bi) were deposited on silicon substrate in different ratio of thickness. These films were annealed at 50°C and 100°C. After heat treatment, the thin films attained the semiconductor nature. Samples were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM) to show granular growth.


NANO ◽  
2016 ◽  
Vol 11 (07) ◽  
pp. 1650079 ◽  
Author(s):  
Wenjun Yan ◽  
Ming Hu ◽  
Jiran Liang ◽  
Dengfeng Wang ◽  
Yulong Wei ◽  
...  

A novel composite of Au-functionalized porous silicon (PS)/V2O5 nanorods (PS/V2O5:Au) was prepared to detect NO2 gas. PS/V2O5 nanorods were synthesized by a heating process of pure vanadium film on PS, and then the obtained PS/V2O5 nanorods were functionalized with dispersed Au nanoparticles. Various analytical techniques, such as field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), have been employed to investigate the properties of PS/V2O5:Au. Herein, the PS/V2O5:Au sample exhibited improved NO2-sensing performances in response, stability and selectivity at room temperature (25[Formula: see text]C), compared with the pure PS/V2O5 nanorods. These phenomena were closely related to not only the dispersed Au nanoparticles acting as a catalyst but also the p-n heterojunctions between PS and V2O5 nanorods. Whereas, more Au nanoparticles suppressed the improvement of response to NO2 gas.


2010 ◽  
Vol 24 (32) ◽  
pp. 3081-3087 ◽  
Author(s):  
GENGPING WAN ◽  
GUIZHEN WANG

Lead tungstate ( PbWO 4) microcrystals with hierarchical structures have been successfully synthesized via a facile microwave irradiation heating method. The cetyltrimethylammonium bromine (CTAB) and microwave-heated power were found to play an important role in the morphological control of resulting PbWO 4 mirocrystals. The products were characterized by the techniques of powder X-ray diffraction and field-emission scanning electron microscopy. A growth mechanism of PbWO 4 microstructures was proposed. The luminescence properties of the final products were investigated and the as-prepared PbWO 4 microcrystals displayed a very unique room-temperature photoluminescence compared to the reported results.


2016 ◽  
Vol 704 ◽  
pp. 173-182 ◽  
Author(s):  
J. Eric Bidaux ◽  
Alexandra Amherd Hidalgo ◽  
Hervé Girard ◽  
Mikel Rodriguez-Arbaizar ◽  
Lionel Reynard ◽  
...  

TiNi shape-memory properties are successfully used today for the fabrication of various technical devices. The limited machinability and high cost of TiNi encourage the use of near-net shape production techniques such as metal injection moulding. In this work TiNi alloys tensile test specimens are produced by metal injection moulding from pre-alloyed powders. A binder based on a mixture of polyethylene, paraffin wax and stearic acid is used. Parts with a density of about 96.6% of theoretical density are obtained. Scanning electron microscopy coupled with EDX measurements reveals a microstructure consisting of a TiNi matrix with small Ti4Ni2Ox and TiC inclusions. DSC and X-ray diffraction observations indicate the presence of additional Ni4Ti3 precipitates. The parts exhibit full superelasticity at room temperature even for strains of up to 4%, without the need for additional thermal post-treatments. Ultimate tensile strengths up to 980 MPa are obtained.


2006 ◽  
Vol 11-12 ◽  
pp. 677-680 ◽  
Author(s):  
Gunawan Hadiko ◽  
Yong Sheng Han ◽  
Masayoshi Fuji ◽  
Minoru Takahashi

Hollow calcium carbonate (CaCO3) particles were synthesized by bubbling CO2 in the solution of calcium chloride (CaCl2) with the presence of ammonia at room temperature. Hollow calcium carbonate is a potential component to be used as pharmaceuticals, agrochemicals, and catalysis. This paper investigated the effect of additive on the hollow structure. In this study was used vanadate ion as additive agent. Physical characteristics of precipitate were evaluated using scanning electron microscopy (SEM) and X-ray diffraction (XRD).


2009 ◽  
Vol 23 (06n07) ◽  
pp. 1548-1552
Author(s):  
X. K. ZHU ◽  
K. Y. ZHAO ◽  
C. J. LI ◽  
J. M. TAO ◽  
T. L. CHAN ◽  
...  

The purpose of experiment was to produce bulk nanocrystalline Zn by mechanical attrition. The bulk nanocrystalline Zn produced by mechanical attrition was studied. The microstructural evolution during cryomilling and subsequent room temperature milling was characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). In this paper, Nanocrystalline Zn was produced by insitu consolidation of Zn elemental powder using mechanical attrition at liquid nitrogen and room temperature. For the samples studied, the longest elongation of 65% and highest stress of 200 MPa is obtained in nanocrystalline Zn during tensile testing at the condition of strain rate (10-3 sec-1) and 20°C which is equal to 0.43 Tm (Tm is the melting temperature of pure Zn ).


2010 ◽  
Vol 8 (2) ◽  
pp. 434-439 ◽  
Author(s):  
Junhao Zhang ◽  
Ling Yang ◽  
Xiaofang Cheng ◽  
Jinmeng Zhang ◽  
Fucai Li

AbstractHierarchical nickel microwires with nanothorns were fabricated through a reduction of nickelous salt with hydrazine in diethanolamine. The product was characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDS). The growth mechanism of the nickel microwires with nanothorns is proposed, based on the evolution of the structures and morphologies, which could be ascribed to the cooperative effect of the complexant of diethanolamine and inherent magnetic interactions. Magnetic properties of the product were measured at room temperature and compared with other shaped counterparts.


Sign in / Sign up

Export Citation Format

Share Document