The Influence of the SPD Temperature on Superplasticity of Aluminium Alloys

2006 ◽  
Vol 503-504 ◽  
pp. 585-590 ◽  
Author(s):  
Rinat K. Islamgaliev ◽  
N.F. Yunusova ◽  
Ruslan Valiev

Recent studies have demonstrated that ultrafinе-grainеd (UFG) alloys processed by equal channel angular pressing (ECAP) and high pressure torsion (HPT) can exhibit enhanced supеrplacticity at relatively low temperature and/or high strain rates. At the same time severe plastic deformation (SPD) of aluminium alloys is often carried out at elevated temperatures leading to various grain size and volume fraction of precipitates. The significance of the SPD temperature for commercial 1420 and 1421 aluminium alloys has been evaluated in this paper using in-situ heating of thin foils in the column of a transmission electron microscope. Superplastic characteristics of alloys processed at various ECAP temperatures are discussed.

Author(s):  
Mihaela Albu ◽  
Bernd Panzirsch ◽  
Hartmuth Schröttner ◽  
Stefan Mitsche ◽  
Klaus Reichmann ◽  
...  

Powder and SLM additively manufactured parts of X5CrNiCuNb17-4 maraging steel were systematically investigated by electron microscopy to understand the relationship between the properties of the powder grains and the microstructure of the printed parts. We prove that satellites, irregularities and superficial oxidation of powder particles can be transformed into an advantage through the formation of nanoscale (AlMnSiTiCr)-oxides in the matrix during the printing process. The nano-oxides showed extensive stability in terms of size, spherical morphology, chemical composition and crystallographic disorder upon in situ heating up to 950°C in the scanning transmission electron microscope. Their presence thus indicates a potential for oxide-dispersive strengthening of this steel, which may be beneficial for creep resistance at elevated temperatures. The nucleation of copper clusters and their evolution into nanoparticles as well as the precipitation of Ni and Cr particles upon in situ heating have as well been systematically documented.


2002 ◽  
Vol 8 (1) ◽  
pp. 16-20 ◽  
Author(s):  
S. Arai ◽  
K. Suzuki ◽  
H. Saka

Behavior of fine crystalline particles of W5Si3 on a β-Si3N4 substrate at high temperatures was observed by an in situ heating experiment in a transmission electron microscope. Some of the fine particles of W5Si3 moved in a to-and-fro manner.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7784
Author(s):  
Mihaela Albu ◽  
Bernd Panzirsch ◽  
Hartmuth Schröttner ◽  
Stefan Mitsche ◽  
Klaus Reichmann ◽  
...  

Powder and selective laser melting (SLM) additively manufactured parts of X5CrNiCuNb17-4 maraging steel were systematically investigated by electron microscopy to understand the relationship between the properties of the powder grains and the microstructure of the printed parts. We prove that satellites, irregularities and superficial oxidation of powder particles can be transformed into an advantage through the formation of nanoscale (AlMnSiTiCr) oxides in the matrix during the printing process. The nano-oxides showed extensive stability in terms of size, spherical morphology, chemical composition and crystallographic disorder upon in situ heating in the scanning transmission electron microscope up to 950 °C. Their presence thus indicates a potential for oxide-dispersive strengthening of this steel, which may be beneficial for creep resistance at elevated temperatures. The nucleation of copper clusters and their evolution into nanoparticles, and the precipitation of Ni and Cr particles upon in situ heating, have been systematically documented as well.


Author(s):  
J. R. Reed ◽  
D. J. Michel ◽  
P. R. Howell

The Al6Li3Cu (T2) phase, which exhibits five-fold or icosahedral symmetry, forms through solid state precipitation in dilute Al-Li-Cu alloys. Recent studies have reported that the T2 phase transforms either during TEM examination of thin foils or following ion-milling of thin foil specimens. Related studies have shown that T2 phase transforms to a microcrystalline array of the TB phase and a dilute aluminum solid solution during in-situ heating in the TEM. The purpose of this paper is to report results from an investigation of the influence of ion-milling on the stability of the T2 phase in dilute Al-Li-Cu alloy.The 3-mm diameter TEM disc specimens were prepared from a specially melted Al-2.5%Li-2.5%Cu alloy produced by conventional procedures. The TEM specimens were solution heat treated 1 h at 550°C and aged 1000 h at 190°C in air to develop the microstructure. The disc specimens were electropolished to achieve electron transparency using a 20:80 (vol. percent) nitric acid: methanol solution at -60°C.


2007 ◽  
Vol 1026 ◽  
Author(s):  
Pascale Bayle-Guillemaud ◽  
Aurelien Masseboeuf ◽  
Fabien Cheynis ◽  
Jean-Christophe Toussaint ◽  
Olivier Fruchart ◽  
...  

AbstractThis paper presents investigations of magnetization configuration evolution during in-situ magnetic processes in materials exhibiting planar and perpendicular magnetic anisotropy. Transmission electron microscopy has been used to perform magnetic imaging. Fresnel contrasts in Lorentz Transmission Electron Microscopy (LTEM) and phase retrieval methods such as Transport of Intensity Equation (TIE) solving or electron holography have been implemented. These techniques are sensitive to magnetic induction perpendicular to the electron beam and can give access to a spatially resolved (resolution better than 10 nm) mapping of magnetic induction distribution and could be extended to dynamical studies during in-situ observation. Thin foils of FePd alloys with a strong perpendicular magnetic anisotropy (PMA) and self-assembled Fe dots are presented. Both are studied during magnetization processes exhibiting the capacities of in-situ magnetic imaging in a TEM.


1991 ◽  
Vol 243 ◽  
Author(s):  
Rainer Bruchhaus ◽  
Dana Pitzer ◽  
Oliver Eibl ◽  
Uwe Scheithauer ◽  
Wolfgang Hoesler

AbstractThe deposition of the bottom electrode plays a key role in the fabrication of ferroelectric capacitors. Processing at elevated temperatures of up to 800°C can give rise to diffusion processes and thereof formation of harmful dielectric layers.In this paper we used Rutherford backscattering spectrometry (RBS), Auger electron spectrometry (AES) and transmission electron microscopy (TEM) to study Pt/Ti/SiO2/Si substrates with various thicknesses of the Ti and Pt layers. During heating up to about 450°C in vacuum the initial layer sequence remains unchanged. However, drastic changes occur when the electrodes are exposed to Ar/O2 atmosphere during heat treatment. Oxidation induced diffusion of Ti into Pt and oxidation of Ti were observed. A Pt electrode with a 100 nm thick Ti adhesion layer proved to be suitable for the "in-situ" deposition of PZT films.


2008 ◽  
Vol 1066 ◽  
Author(s):  
Ram Kishore ◽  
Renu Sharma ◽  
Satoshi Hata ◽  
Noriyuki Kuwano ◽  
Yoshitsuga Tomokiyo ◽  
...  

ABSTRACTThe interaction of amorphous silicon and aluminum films to achieve polycrystalline silicon has been investigated using transmission electron microscope equipped with in-situ heating holder. Carbon coated nickel grids were used for TEM studies. An ultra high vacuum cluster tool was used for the deposition of a ∼50nm a-Si films and a vacuum deposition system was used to deposit a ∼50nm Al films on a-Si film. The microstructural features and electron diffraction in the plain view mode were observed with increase in temperature starting from room temperature to 275 °C. The specimen was loaded inside TEM heating holder. The temperature was measured and kept constant for 5 minutes during which the microstructure at fixed magnification of X63K was recorded and the electron diffraction pattern of the same area was also recorded. The temperature was then increase and fixed at desired value and microstructure and EDP were again recorded. The temperatures used in this experiment were 30, 100, 150, 200, 225, 275°C. A sequential change in microstructural features and electron diffraction pattern due to interfacial diffusion of boundary between Al and amorphous Si was investigated. Evolution of polycrystalline silicon with randomly oriented grains as a result of a-Si and Al interaction was revealed. After the in-situ heating experiment the specimen was subjected to high resolution TEM and EDS investigations after removing the excess Al. The EDS analysis of the crystallized specimen was performed to locate the Al distribution in the crystallized silicon. These studies show that the Al induced crystallization process can be used to prepare polycrystalline as well as nanocrystalline silicon by controlling the in-situ annealing parameters. The investigations are very useful as the nanocrystalline silicon is being investigated for its use in developing high efficiency silicon solar structures.


Sign in / Sign up

Export Citation Format

Share Document