Investigation of Pt Bottom Electrodes for "In-Situ" Deposited Pb(Zr,Ti)O3 (PZT) thin Films

1991 ◽  
Vol 243 ◽  
Author(s):  
Rainer Bruchhaus ◽  
Dana Pitzer ◽  
Oliver Eibl ◽  
Uwe Scheithauer ◽  
Wolfgang Hoesler

AbstractThe deposition of the bottom electrode plays a key role in the fabrication of ferroelectric capacitors. Processing at elevated temperatures of up to 800°C can give rise to diffusion processes and thereof formation of harmful dielectric layers.In this paper we used Rutherford backscattering spectrometry (RBS), Auger electron spectrometry (AES) and transmission electron microscopy (TEM) to study Pt/Ti/SiO2/Si substrates with various thicknesses of the Ti and Pt layers. During heating up to about 450°C in vacuum the initial layer sequence remains unchanged. However, drastic changes occur when the electrodes are exposed to Ar/O2 atmosphere during heat treatment. Oxidation induced diffusion of Ti into Pt and oxidation of Ti were observed. A Pt electrode with a 100 nm thick Ti adhesion layer proved to be suitable for the "in-situ" deposition of PZT films.

1994 ◽  
Vol 361 ◽  
Author(s):  
F. Varniere ◽  
B. Eakim ◽  
B. Agius ◽  
R. Bisaro ◽  
J. Olivier ◽  
...  

ABSTRACTThe selection of a suitable electrode and barrier layer is important in the integration of lead zirconate titanate (PZT) into memory circuits. Processing at elevated temperatures of up to 800°C can give rise to diffusion processes and therefore to formation of poor quality layers.In this paper we used Rutherford Backscattering Spectrometry (RBS), Auger Electron Spectrometry (AES), and X-ray Diffraction (XRD) to study the effects of annealings on the interdiffusion of Pt/TiN/Ti trilayers deposited on BPSG/Si substrates. The wafers were annealed in Ar, N2 or O2 ambients with temperatures ranging from 550 to 700°C for 60 min, 30 min or 30 sec. Drastic changes occur when the as deposited Pt/TiN/Ti layers on BPSG/Si structures are exposed to classical heat treatment: oxidation induces diffusion of Ti into Pt and oxidation of Ti is also observed. Regardeless of annealing proceedure used, significant improvement in the interdiffusion of Pt, Ti and O have been achieved when the TiN/Ti/BPSG/Si structure was heated up to 450°C in vacuum. Platinum films deposited on such a structure seem to be a promising barrier layer for PZT film elements as there was no indication of Pb diffusion into the underlying layers and furthermore the desired crystal structure was obtained.


Author(s):  
Mihaela Albu ◽  
Bernd Panzirsch ◽  
Hartmuth Schröttner ◽  
Stefan Mitsche ◽  
Klaus Reichmann ◽  
...  

Powder and SLM additively manufactured parts of X5CrNiCuNb17-4 maraging steel were systematically investigated by electron microscopy to understand the relationship between the properties of the powder grains and the microstructure of the printed parts. We prove that satellites, irregularities and superficial oxidation of powder particles can be transformed into an advantage through the formation of nanoscale (AlMnSiTiCr)-oxides in the matrix during the printing process. The nano-oxides showed extensive stability in terms of size, spherical morphology, chemical composition and crystallographic disorder upon in situ heating up to 950°C in the scanning transmission electron microscope. Their presence thus indicates a potential for oxide-dispersive strengthening of this steel, which may be beneficial for creep resistance at elevated temperatures. The nucleation of copper clusters and their evolution into nanoparticles as well as the precipitation of Ni and Cr particles upon in situ heating have as well been systematically documented.


1995 ◽  
Vol 380 ◽  
Author(s):  
C. Deng ◽  
J. C. Wu ◽  
C. J. Barbero ◽  
T. W. Sigmon ◽  
M. N. Wybourne

ABSTRACTA fabrication process for sub-100 nm Ge wires on Si substrates is reported for the first time. Wires with a cross section of 6 × 57 nm2 are demonstrated. The wire structures are analyzed by atomic force (AFM), scanning electron (SEM), and transmission electron microscopy (TEM). Sample preparation for TEM is performed using a novel technique using both pre and in situ deposition of multiple protection layers using a Focused Ion Beam (FIB) micromachining system.


2015 ◽  
Vol 21 (6) ◽  
pp. 1622-1628 ◽  
Author(s):  
Jonathan P. Winterstein ◽  
Pin Ann Lin ◽  
Renu Sharma

AbstractIn situenvironmental transmission electron microscopy (ETEM) experiments require specimen heating holders to study material behavior in gaseous environments at elevated temperatures. In order to extract meaningful kinetic parameters, such as activation energies, it is essential to have a direct and accurate measurement of local sample temperature. This is particularly important if the sample temperature might fluctuate, for example when room temperature gases are introduced to the sample area. Using selected-area diffraction (SAD) in an ETEM, the lattice parameter of Ag nanoparticles was measured as a function of the temperature and pressure of hydrogen gas to provide a calibration of the local sample temperature. SAD permits measurement of temperature to an accuracy of ±30°C using Ag lattice expansion. Gas introduction can cause sample cooling of several hundred degrees celsius for gas pressures achievable in the ETEM.


2002 ◽  
Vol 8 (1) ◽  
pp. 16-20 ◽  
Author(s):  
S. Arai ◽  
K. Suzuki ◽  
H. Saka

Behavior of fine crystalline particles of W5Si3 on a β-Si3N4 substrate at high temperatures was observed by an in situ heating experiment in a transmission electron microscope. Some of the fine particles of W5Si3 moved in a to-and-fro manner.


2014 ◽  
Vol 20 (4) ◽  
pp. 1038-1045 ◽  
Author(s):  
Christian D. Damsgaard ◽  
Henny Zandbergen ◽  
Thomas W. Hansen ◽  
Ib Chorkendorff ◽  
Jakob B. Wagner

AbstractSpecimen transfer under controlled environment conditions, such as temperature, pressure, and gas composition, is necessary to conduct successive complementary in situ characterization of materials sensitive to ambient conditions. The in situ transfer concept is introduced by linking an environmental transmission electron microscope to an in situ X-ray diffractometer through a dedicated transmission electron microscope specimen transfer holder, capable of sealing the specimen in a gaseous environment at elevated temperatures. Two catalyst material systems have been investigated; Cu/ZnO/Al2O3 catalyst for methanol synthesis and a Co/Al2O3 catalyst for Fischer–Tropsch synthesis. Both systems are sensitive to ambient atmosphere as they will oxidize after relatively short air exposure. The Cu/ZnO/Al2O3 catalyst, was reduced in the in situ X-ray diffractometer set-up, and subsequently, successfully transferred in a reactive environment to the environmental transmission electron microscope where further analysis on the local scale were conducted. The Co/Al2O3 catalyst was reduced in the environmental microscope and successfully kept reduced outside the microscope in a reactive environment. The in situ transfer holder facilitates complimentary in situ experiments of the same specimen without changing the specimen state during transfer.


2012 ◽  
Vol 18 (S2) ◽  
pp. 1114-1115 ◽  
Author(s):  
H. Zandbergen

Extended abstract of a paper presented at Microscopy and Microanalysis 2012 in Phoenix, Arizona, USA, July 29 – August 2, 2012.


1985 ◽  
Vol 62 ◽  
Author(s):  
M. A. Parker ◽  
T. W. Sigmon ◽  
R. Sinclair

ABSTRACTA technique has been developed which employs high resolution transmission electron microscopy (HRTEM) for the observation of the atomic mechanisms associated with solid state phase transformation as they occur at elevated temperatures. It consists of the annealing in-situ of cross-section transmission electron microscopy (TEM) specimens that have been favorably oriented for lattice fringe imaging and the video-recording of dynamic events as they occur in real-time. By means of this technique, we report the first video-recorded lattice images of crystallographic defect motion in silicon, viz. the motion of dislocations and stacking faults, as well as the first such images of the atomic mechanisms responsible for the amorphous to crystalline (a-c) phase transformation, viz. heterogeneous nucleation of crystal nuclei, coalescence of crystal nuclei by co-operative atomic processes, ledge motion at the growth interface, and normal growth in silicon. This technique holds great potential for the elucidation of the atomic mechanisms involved in reaction kinetics in the solid state.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7784
Author(s):  
Mihaela Albu ◽  
Bernd Panzirsch ◽  
Hartmuth Schröttner ◽  
Stefan Mitsche ◽  
Klaus Reichmann ◽  
...  

Powder and selective laser melting (SLM) additively manufactured parts of X5CrNiCuNb17-4 maraging steel were systematically investigated by electron microscopy to understand the relationship between the properties of the powder grains and the microstructure of the printed parts. We prove that satellites, irregularities and superficial oxidation of powder particles can be transformed into an advantage through the formation of nanoscale (AlMnSiTiCr) oxides in the matrix during the printing process. The nano-oxides showed extensive stability in terms of size, spherical morphology, chemical composition and crystallographic disorder upon in situ heating in the scanning transmission electron microscope up to 950 °C. Their presence thus indicates a potential for oxide-dispersive strengthening of this steel, which may be beneficial for creep resistance at elevated temperatures. The nucleation of copper clusters and their evolution into nanoparticles, and the precipitation of Ni and Cr particles upon in situ heating, have been systematically documented as well.


Sign in / Sign up

Export Citation Format

Share Document