Substructure of Ultrafine Grained Metals after Intensive External Influences at Study of Field Ion Microscopy Method

2006 ◽  
Vol 503-504 ◽  
pp. 995-1000
Author(s):  
Viktor Varyukhin ◽  
B. Efros ◽  
V. Ivchenko ◽  
N. Efros ◽  
E. Popova

It has been revealed that in Iridium influenced be severe plastic deformation (SPD) a ultrafine grained (UFG) structure is formed (the grain size of 20-30 nm), but in the bodies of grains there are practically no defects of structure, however, after irradiation a subgrain structure, (subgrain size of 3-5 nm) is formed, and in the bodies of subgrains there are defects. The subgrain structure was also revealed in UFG Nickel and Copper after SPD (subgrain size of 3-15 nm), but in the latter case the observed boundary region is broader and subgrain are highly disoriented.

2010 ◽  
Vol 667-669 ◽  
pp. 253-258
Author(s):  
Wei Ping Hu ◽  
Si Yuan Zhang ◽  
Xiao Yu He ◽  
Zhen Yang Liu ◽  
Rolf Berghammer ◽  
...  

An aged Al-5Zn-1.6Mg alloy with fine η' precipitates was grain refined to ~100 nm grain size by severe plastic deformation (SPD). Microstructure evolution during SPD and mechanical behaviour after SPD of the alloy were characterized by electron microscopy and tensile, compression as well as nanoindentation tests. The influence of η' precipitates on microstructure and mechanical properties of ultrafine grained Al-Zn-Mg alloy is discussed with respect to their effect on dislocation configurations and deformation mechanisms during processing of the alloy.


Author(s):  
Mihaela Banu ◽  
Mitica Afteni ◽  
Alexandru Epureanu ◽  
Valentin Tabacaru

There are several severe plastic deformation processes that transform the material from microsized grains to the nanosized grains under large deformations. The grain size of a macrostructure is generally 300 μm. Following severe plastic deformation it can be reached a grain size of 200 nm and even less up to 50 nm. These structures are called ultrafine grained materials with nanostructured organization of the grains. There are severe plastic deformation processes like equal angular channel, high pressure torsion which lead to a 200 nm grain size, respectively 100 nm grain size. Basically, these processes have a common point namely to act on the original sized material so that an extreme deformation to be produced. The severe plastic deformation processes developed until now are empirically-based and the modeling of them requires more understanding of how the materials deform. The macrostructural material models do not fit the behavior of the nanostructured materials exhibiting simultaneously high strength and ductility. The existent material laws need developments which consider multi-scale analysis. In this context, the present paper presents a laboratory method to obtain ultrafine grains of an aluminum alloy (Al-Mg) that allows the microstructure observations and furthermore the identification of the stress–strain response under loadings. The work is divided into (i) processing of the ultrafine-grained aluminum alloy using a laboratory-scale process named in-plane controlled multidirectional shearing process, (ii) crystallographic analysis of the obtained material structure, (iii) tensile testing of the ultrafine-grained aluminum specimens for obtaining the true stress-strain behavior. Thus, the microscale phenomena are explained with respect to the external loads applied to the aluminum alloy. The proposed multi-scale analysis gives an accurate prediction of the mechanical behavior of the ultrafine-grained materials that can be further applied to finite element modeling of the microforming processes.


2008 ◽  
Vol 604-605 ◽  
pp. 97-111 ◽  
Author(s):  
Roberto B. Figueiredo ◽  
Megumi Kawasaki ◽  
Terence G. Langdon

Processing through the application of severe plastic deformation (SPD) provides an opportunity for achieving very significant grain refinement in bulk metals. Since the occurrence of superplastic flow generally requires a grain size smaller than ~10 µm, it is reasonable to anticipate that materials processed by SPD will exhibit superplastic ductilities when pulled in tension at elevated temperatures. This paper summarizes the fundamental principles of SPD processing and describes recent results demonstrating the occurrence of exceptional superplastic flow in these ultrafine-grained materials.


2008 ◽  
Vol 584-586 ◽  
pp. 559-564 ◽  
Author(s):  
Sergey V. Dobatkin ◽  
Yuri Estrin ◽  
L.L. Rokhlin ◽  
Mikhail V. Popov ◽  
Rimma Lapovok ◽  
...  

Severe plastic deformation of a Mg-Al-Ca alloy resulted in different types of grain structure. High pressure torsion (HPT) was shown to lead to the formation of a nanocrystalline structure with a grain size of 100-200 nm, while equal channel angular pressing (ECAP) produced ultrafine grained (UFG) or submicrocrystalline (SMC) structures, depending on the ECAP temperature. An UFG structure with a grain size of 2-5 -m was formed at 300°C, as distinct from a finer SMC structure with a grain size of 300-800 nm formed at a lower temperature (220°C). The possibility of increasing the strength of the alloy in the UFG condition by a factor of 1.5-2, combined with a reasonable level of ductility and enhanced functional properties was thus demonstrated. ECAP of annealed Mg-Al-Ca with the formation of UFG structure was shown to lead to increased yield strength (by a factor of 2) and enhanced tensile ductility (by a factor of 3).


Author(s):  
Thê-Duong Nguyen ◽  
Van-Tung Phan ◽  
Quang-Hien Bui

In this study, a crystal plasticity finite element model (CPFEM) has been revisited to study the microstructure effects on macroscopic mechanical behavior of ultrafine-grained (UFG) nickels processed by severe plastic deformation (SPD). The microstructure characteristics such as grain size and dislocation density show a strong influence on the mechanical behavior of SPD-processed materials. We used a modified Hall–Petch relationship at grain level to study both grain size and dislocation density dependences of mechanical behavior of SPD-processed nickel materials. Within the framework of small strain hypothesis, it is quite well shown that the CPFEM predicts the mechanical behavior of unimodal nickels processed by SPD methods. Moreover, a comparison between the proposed model and the self-consistent approach will be shown and discussed.


2008 ◽  
Vol 584-586 ◽  
pp. 623-630 ◽  
Author(s):  
Sergey V. Dobatkin ◽  
P.D. Odessky ◽  
Svetlana V. Shagalina

The structure, mechanical and functional properties of ultrafine-grained low-carbon steels have been studied after severe plastic deformation (SPD) by high pressure torsion (HPT) and equalchannel angular pressing (ECAP). It is revealed that HPT of low carbon steels at a temperature below 0.3 Tm leads to the formation of nanocrystalline structure with a grain size of <100 nm or a mixture of oriented substructure and nanograins. ECAP under similar conditions leads to the formation of submicrocrystalline structure with a grain size of 200-300 nm. The initial martensitic state compared with the initial ferritic-pearlitic state of the low-carbon steels results in formation of finer structure after SPD and less intense grain growth upon heating, i.e., results in a higher thermal stability. Low-carbon low-alloy steels after ECAP are characterized by high strength (UTS > 1000 MPa) and plasticity (EL = 10-15%). The high-strength state after ECAP is retained upon tensile test testing up to a temperature of 500°C. The submicrocrystalline low-carbon steels after ECAP processing and subsequent heating is characterized by an increased impact toughness at test temperatures down to -40°C.


2007 ◽  
Vol 345-346 ◽  
pp. 45-48 ◽  
Author(s):  
Jozef Zrník ◽  
Sergey V. Dobatkin ◽  
Ondrej Stejskal

The article focuses on the results from recent experimental of severe plastic deformation of low carbon (LC) steel and medium carbon (MC) steel performed at increased temperatures. The grain refinement of ferrite respectively ferrite-pearlite structure is described. While LC steel was deformed by ECAP die (ε = 3) with a channel angle φ = 90° the ECAP severe deformation of MC steel was conducted with die channel angle of 120° (ε = 2.6 - 4). The high straining in LC steel resulted in extensively elongated ferrite grains with dense dislocation network and randomly recovered and polygonized structure was observed. The small period of work hardening appeared at tensile deformation. On the other side, the warm ECAP deformation of MC steel in dependence of increased effective strain resulted in more progressive recovery process. In interior of the elongated ferrite grains the subgrain structure prevails with dislocation network. As straining increases the dynamic polygonization and recrystallization became active to form mixture of polygonized subgrain and submicrocrystalline structure. The straining and moderate ECAP temperature caused the cementite lamellae fragmentation and spheroidzation as number of passes increased. The tensile behaviour of the both steels was characterized by strength increase however the absence of strain hardening was found at low carbon steel. The favourable effect of ferrite-pearlite structure modification due straining was reason for extended work hardening period observed at MC steel.


Author(s):  
H Jafarzadeh ◽  
K Abrinia

The microstructure evolution during recently developed severe plastic deformation method named repetitive tube expansion and shrinking of commercially pure AA1050 aluminum tubes has been studied in this paper. The behavior of the material under repetitive tube expansion and shrinking including grain size and dislocation density was simulated using the finite element method. The continuous dynamic recrystallization of AA1050 during severe plastic deformation was considered as the main grain refinement mechanism in micromechanical constitutive model. Also, the flow stress of material in macroscopic scale is related to microstructure quantities. This is in contrast to the previous approaches in finite element method simulations of severe plastic deformation methods where the microstructure parameters such as grain size were not considered at all. The grain size and dislocation density data were obtained during the simulation of the first and second half-cycles of repetitive tube expansion and shrinking, and good agreement with experimental data was observed. The finite element method simulated grain refinement behavior is consistent with the experimentally obtained results, where the rapid decrease of the grain size occurred during the first half-cycle and slowed down from the second half-cycle onwards. Calculations indicated a uniform distribution of grain size and dislocation density along the tube length but a non-uniform distribution along the tube thickness. The distribution characteristics of grain size, dislocation density, hardness, and effective plastic strain were consistent with each other.


Sign in / Sign up

Export Citation Format

Share Document