Low-Pressure Injection Molding Processing of AISI T15 High Speed Steel Powders

2006 ◽  
Vol 514-516 ◽  
pp. 569-573
Author(s):  
João Franklin Liberati ◽  
Oscar O. Araujo Filho ◽  
Waldemar Alfredo Monteiro ◽  
Iara M. Esposito ◽  
Rejane A. Nogueira ◽  
...  

Low-pressure powder injection molding was used to obtain AISI T15 high speed steel parts. The binders used were based on paraffin wax, low density polyethylene and stearic acid. The metals powders were characterized in terms of morphology, particle size distribution. The mixture was injected in the shape of square bar specimens to evaluate the performance of the injection in the green state, and then sintered. The samples were injected under the pressures of 0.4, 0.5 and 0.7MPa and at temperatures varying from 110 to 150°C aiming the optimization of the process. The results of the variation of injection pressure were evaluated by measuring the density of the green parts. Debinding was carried out in two steps: first, the molded part was immersed in heptane to remove the major component of the binder and then heated to remove the remaining binder. A second step debinding and sintering were performed in a single step. This procedure shortened considerably the debinding and sintering time.

2012 ◽  
Vol 19 (2) ◽  
pp. 117-121 ◽  
Author(s):  
Dong-Wook Park ◽  
Hye-Seong Kim ◽  
Young-Sam Kwon ◽  
Kwon-Koo Cho ◽  
Su-Gun Lim ◽  
...  

2014 ◽  
Vol 40 (7) ◽  
pp. 2415-2421 ◽  
Author(s):  
Dong-Wook Park ◽  
Dae-Hwan Kim ◽  
Hye-Seong Kim ◽  
Youg-Sam Kwon ◽  
Kwon-Koo Cho ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Fouad Fareh ◽  
Vincent Demers ◽  
Nicole R. Demarquette ◽  
Sylvain Turenne ◽  
Orlando Scalzo

The impact of binders and temperature on the rheological properties of feedstocks used in low-pressure powder injection molding was investigated. Experiments were conducted on different feedstock formulations obtained by mixing Inconel 718 powder with wax-based binder systems. The shear rate sensitivity index and the activation energy were used to study the degree of dependence of shear rate and temperature on the viscosity of the feedstocks. The injection performance of feedstocks was then evaluated using an analytical moldability model. The results indicated that the viscosity profiles of feedstocks depend significantly on the binder constituents, and the secondary binder constituents play an important role in the rheological behavior (pseudoplastic or near-Newtonian) exhibited by the feedstock formulations. Viscosity values as low as 0.06 to 2.9 Pa·s were measured at high shear rates and high temperatures. The results indicate that a feedstock containing a surfactant agent exhibits the best moldability characteristics.


2021 ◽  
Vol 1016 ◽  
pp. 1423-1429
Author(s):  
Kaweewat Worasaen ◽  
Andreas Stark ◽  
Karuna Tuchinda ◽  
Piyada Suwanpinij

A matrix type high speed steel YXR3 designed for a combination of wear resistance and toughness is investigated for its mechanical properties after hardening by deep cryogenic treatment follow by tempering. The deep cryogenic quenching carried out at -200 °C for 36 hours and the single step tempering results in an obvious improvement in wear resistance while balancing the toughness, comparing with the conventional quenching followed by a double tempering treatment. The quantitative image analysis reveals little difference in the MC carbide size distribution between tempering at different temperatures. The synchrotron high energy XRD confirms the MC type carbide with some evolution in its orientation together with tempered martensite approaching the BCC structure at higher temperatures. In contrary to the conventional quenching and tempering, the lowest tempering temperature at 200 °C yields a moderate drop in hardness with increase in surface toughness proportionally while exhibiting exceptional wear resistance. Such thermal cycle can be recommended for the industry both for the practicality and improved tool life.


Applied laser ◽  
2013 ◽  
Vol 33 (2) ◽  
pp. 181-185
Author(s):  
王金华 Wang Jinhua ◽  
袁根福 Yuan Genfu ◽  
逄志伟 Pang Zhiwei ◽  
陈春映 Chen Chunying

Sign in / Sign up

Export Citation Format

Share Document