Corrosion Rate and Oxide Scale Characteristics of Austenitic Alloys in Supercritical Water

2006 ◽  
Vol 522-523 ◽  
pp. 213-220 ◽  
Author(s):  
Yutaka Watanabe ◽  
Yuzo Daigo

Corrosion properties were investigated on stainless steels and Ni base alloys in supercritical water containing 0.01mol/kg-H2SO4 at 400°C/30MPa as a function of oxygen concentration ranging from 3ppb to 800ppm. Alloys with high Fe content showed an interesting contrast in corrosion property in sulfuric acid-containing supercritical water between at the high oxygen condition (800ppm) and at the lower oxygen conditions (3ppb and 8ppm). At 8ppm of oxygen concentration or lower, corrosion rate was a unique function of Cr content of the alloys including both Ni base alloys and stainless steels. However, corrosion resistance of the iron-based alloys (316 stainless steels) was remarkably improved when oxygen concentration was increased up to 800ppm. Corrosion rate of alloy C-276, which contains 5.7% of iron, was also somewhat reduced under the high oxygen condition, while corrosion rate of the other “iron-less” Ni base alloys was accelerated as oxygen level was increased. Characteristics of oxide scales, in terms of chemical composition and compound structure, have been examined in connection with the corrosion properties of the alloys.

2013 ◽  
Vol 19 (1) ◽  
pp. 47-52 ◽  
Author(s):  
Bartosz Jawecki ◽  
Tomasz Jaroszewicz-Smyk ◽  
Andrzej Drabiński

Abstract The paper presents the results of research on the spatial variation of oxygen condition in a carp pond. The analysis of dissolved oxygen was carried out in the summer in 29 measuring points. In the analysed months the differences were determined between dissolved oxygen concentration in the strip of rushes and the part of the pond free from macrophytes. In the strip of rushes, the average concentration of dissolved oxygen was between 4.69-6.49 mg O2·dm-3. In the part of pond located near the strip of rushes the oxygen concentration was between 6.23-7.91 mg O2·dm-3 and in open water concentration of dissolved oxygen was in range 7.60-9.09 mg O2·dm-3. It was found that the biggest differences in oxygen concentration occur between the strip of rushes and the open water column: 40% in June, 26% in July, 28% in August, 38% in September, respectively. In the south-western part of the pond, covered with macrophytes and shaded by trees, the worst oxygen conditions were observed - below the optimum level for carps, sometimes reaching lethal values. The best oxygen conditions, noted in July and August, were in the central and northern part of the pond including the fishery and feeding point. In order to improve the oxygen conditions in macrophytes zone it is recommended to remove the rushes periodically and to remember to leave the part of emergent plants that are necessary for breeding and living avifauna. The scope and timing of the removal of plants has to be consulted and co-ordinated with the Regional Conservator of Nature.


2015 ◽  
Vol 778 ◽  
pp. 164-167 ◽  
Author(s):  
Zhi Qiang Ren ◽  
Xiao Ming Wang ◽  
Qi Wei Wang ◽  
Chao Ji Zhou ◽  
Yao Zhang

In this study, the anti-corrosion properties of nickel-based coatings on the surface of copper alloy were investigated, and damages caused by corrosion on the copper surface were resolved. Researchers prepared nickel-based coatings by supersonic particles deposition, and tested the anti-corrosion properties of brass substrate and nickel-based coating by electrochemical technology and neutral salt spray. The results show that, the corrosion current of coating decreased 35 times than that of matrix. The successive and pyknotic oxide film on the surface of coating prevented reaction of corrosion further. When it reached 500 hours, the corrosion rate closed to 0. Nickel-based coatings prepared by supersonic particles deposition contribute to the increase of corrosion resistance significantly, which verifies that it is feasible to prepare outstanding corrosion resisting nickel-based coating by supersonic particles deposition.


2004 ◽  
Vol 335 (2) ◽  
pp. 169-173 ◽  
Author(s):  
A. Aiello ◽  
M. Azzati ◽  
G. Benamati ◽  
A. Gessi ◽  
B. Long ◽  
...  

Author(s):  
Yu Zhang ◽  
Peilin Wang ◽  
Kaiyuan Zheng ◽  
Huayi Yin ◽  
Dihua Wang

Abstract Long-lasting metallic materials are key to enabling a robust and reliable molten carbonate electrolyzer. In this paper, the corrosion behaviors of SS310 and IN718 in molten Li2CO3-K2CO3-Na2CO3 under CO2-O2 atmosphere were systematically studied. The results show that IN718 had a lower corrosion rate than that of SS310 because of the higher Ni concentration. In addition, increasing the temperature and decreasing the oxygen concentration can reduce the corrosion rate of both SS310 and IN718. As a result, IN718 is a suitable material to be used in molten salt electrolyzers. Overall, engineering the alloy and molten salt compositions as well as manipulating the gas atmosphere can suppress the corrosion of metallic materials, thereby screening durable metallic materials for high-temperature molten carbonate electrolyzers.


2010 ◽  
Vol 150-151 ◽  
pp. 1054-1057
Author(s):  
Song Min Zhang ◽  
Liu Jie Xu

The components in slurry pump suffer serious corrosion and abrasion in the phosphorus fertilizer manufacturing process because they undergo corrosion of H3PO4 medium and impact of particles at the same time. Presently, High chromium cast irons are often used to produce the components in slurry pump. In order to reveal the corrosive law, the corrosion properties of high chromium cast iron with 26wt.%Cr content (Cr26) were tested under different H3PO4 medium concentration conditions. Using back-propagation (BP) neural network, the non-linear relationship between the corrosion weight losses (W) and H3PO4 concentration, corrosion time (C, t) is established on the base of the dealing with experimental data. The results show that the well-trained BP neural network can predict the wear weight loss precisely according to H3PO4 concentration and corrosion time. The prediction results reveal that corrosion weight loss rises linearly with increasing corrosion time. The H3PO4 concentration has obvious effect on corrosion property. When H3PO4 concentration is lower than about 0.5mol/L, high chromium cast iron has well resistance to H3PO4 corrosion. However, the corrosion resistance of high chromium cast iron rapidly decreases when the H3PO4 concentration exceed about 0.8 mol/L. It is suggest the high chromium cast iron be used under the condition of H3PO4 concentration of lower 0.8 mol/L.


2021 ◽  
Vol 7 (3) ◽  
Author(s):  
Nagoor Basha Shaik ◽  
Kedar Mallik Mantrala ◽  
Balaji Bakthavatchalam ◽  
Qandeel Fatima Gillani ◽  
M. Faisal Rehman ◽  
...  

AbstractThe well-known fact of metallurgy is that the lifetime of a metal structure depends on the material's corrosion rate. Therefore, applying an appropriate prediction of corrosion process for the manufactured metals or alloys trigger an extended life of the product. At present, the current prediction models for additive manufactured alloys are either complicated or built on a restricted basis towards corrosion depletion. This paper presents a novel approach to estimate the corrosion rate and corrosion potential prediction by considering significant major parameters such as solution time, aging time, aging temperature, and corrosion test time. The Laser Engineered Net Shaping (LENS), which is an additive manufacturing process used in the manufacturing of health care equipment, was investigated in the present research. All the accumulated information used to manufacture the LENS-based Cobalt-Chromium-Molybdenum (CoCrMo) alloy was considered from previous literature. They enabled to create a robust Bayesian Regularization (BR)-based Artificial Neural Network (ANN) in order to predict with accuracy the material best corrosion properties. The achieved data were validated by investigating its experimental behavior. It was found a very good agreement between the predicted values generated with the BRANN model and experimental values. The robustness of the proposed approach allows to implement the manufactured materials successfully in the biomedical implants.


CORROSION ◽  
1998 ◽  
Vol 54 (11) ◽  
pp. 910-921 ◽  
Author(s):  
K. Y. Kim ◽  
P. Q. Zhang ◽  
T. H. Ha ◽  
Y. H. Lee

Author(s):  
Vaidyanathan Krishnan ◽  
J. S. Kapat ◽  
Y. H. Sohn ◽  
V. H. Desai

In recent times, the use of coal gas in gas turbines has gained a lot of interest, as coal is quite abundant as a primary source of energy. However, use of coal gas produces a few detrimental effects that need closer attention. This paper concentrates on one such effect, namely hot corrosion, where trace amounts of sulfur can cause corrosion (or sulfidation) of hot and exposed surfaces, thereby reducing the life of the material. In low temperature hot corrosion, which is the focus of this paper, transport of SO2 from the hot gas stream is the primary process that leads to a chain of events, ultimately causing hot corrosion. The corrosion rate depends on SO2 mass flux to the wall as well as wall surface temperature, both of which are affected in the presence of any film cooling. An analytical model is developed to describe the associated transport phenomena of both heat and mass in the presence of film cooling The model predicts how corrosion rates may be affected under operating conditions. It is found that although use of film cooling typically leads to lower corrosion rate, there are combinations of operating parameters under which corrosion rate can actually increase in the presence of film cooling.


CORROSION ◽  
10.5006/3820 ◽  
2021 ◽  
Author(s):  
Wei Liu ◽  
Huayi Yin ◽  
Kaifa Du ◽  
Bing Yang ◽  
Dihua Wang

Corrosion-resistant metals and alloys towards liquid metals determine the service performances and lifetime of the devices employing liquid metals. This paper studies the static corrosion behaviors of iron, chromium, nickel, low carbon steel, and four types of stainless steels (SS410, SS430, SS304, SS316L) in liquid Sb-Sn at 500 oC, aiming to screen corrosion-resistant SS for Li||Sb-Sn liquid metal batteries (LMBs). The corrosion rates of Fe and Ni are 0.94 μm h-1 and 6.03 μm h-1 after 160 h’s measurement, respectively. Cr shows a low corrosion rate of < 0.05μm h-1, which is due to the formation of a relatively stable Cr-Sb layer that may be able to prevent the interdiffusion between the solid substrate and liquid Sb-Sn. Ni has a high corrosion rate because the formed Ni-Sb and Ni-Sn compounds are soluble in the liquid Sb-Sn. The corrosion products of both pure metals and SS can be predicted by thermodynamic and phase diagram analysis. Among the four types of SS, SS430 shows the best corrosion resistance towards liquid Sb-Sb with a corrosion rate of 0.19 μm h-1. Therefore, a liquid Sb-Sn resistant material should have a high Cr content and a low Ni content, and this principle is applicable to design metallic materials not only for LMBs but also for other devices employing liquid Sb- and Sn-containing liquid metals.


Sign in / Sign up

Export Citation Format

Share Document