Influence of Binders on the Structure and Properties of High Speed-Steel HS6-5-2 Type Fabricated Using Pressureless Forming and PIM Methods

2007 ◽  
Vol 534-536 ◽  
pp. 693-696
Author(s):  
G. Matula ◽  
Leszek Adam Dobrzański ◽  
Gemma Herranz ◽  
A. Várez ◽  
B. Levenfeld ◽  
...  

Based on the comparison of structures and properties of the HS6-5-2 high speed steels made with the powder injection moulding method, pressureless forming, compacting and sintering, and commercial steels made with the ASEA-STORA method, fine carbides spread evenly in the steel matrix were found in the structure of all tested high-speed steels in the sintered state. The use of a nitrogen atmosphere in the sintering process, causes the formation of fine, spherical MX type carbonitrides, stable in high sintering and austenitizing temperatures. The steels made with the pressureless forming method are characteristic of the lowest sintering temperature and the highest density, resulting from the high carbon concentration coming from the binding agent degradation. Moreover, the higher carbon concentration causes an increase in the retained austenite portion and a lower hardness after quenching and tempering. The heat-treated injection moulded steel attains hardness comparable to the commercial ASP23 type one, demonstrating the well-founded reasons for using the powder-injection moulding method for manufacturing the high-speed steel. The powder-injection moulding makes manufacturing tools possible with their final shape, i.e., leaving out the plastic forming and machining which is necessary for instance in case of the ASP 23 type steel. Furthermore, the degradation and sintering process time of the injection moulded steels is approximately 10h shorter than for steels made with pressureless moulding, which is due to the use of a two-component binding agent.

2021 ◽  
Vol 58 (1) ◽  
pp. 32-47
Author(s):  
J. Ott ◽  
A. Burghardt ◽  
D. Britz ◽  
S. Majauskaite ◽  
F. Mücklich

Abstract This work will present possibilities for the characterization of copper powder green bodies and sintered copper microstructures during pressureless sintering. The introduction of new parameters to microstructural characterization based on qualitative and quantitative microstructural analysis will facilitate the systematic optimization of the sintering process. As a result of the specific evaluation of the microstructure evolution, conventional isothermal sintering could be successfully replaced by multi-step temperature profiles, thus achieving sintering densities of more than 99 % by simultaneously reducing process time. This systematic optimization of the sintering process of Cu through specific microstructural analysis may now be applied to sinter-based manufacturing technologies such as Binder Jetting and Metal Powder Injection Moulding, enabling the manufacture of complex and highly conductive Cu parts for applications in electronics.


2015 ◽  
Vol 602 ◽  
pp. 012001 ◽  
Author(s):  
J Gonzalez-Gutierrez ◽  
G B Stringari ◽  
Z M Megen ◽  
P Oblak ◽  
B S von Bernstorff ◽  
...  

2014 ◽  
Vol 879 ◽  
pp. 169-174
Author(s):  
R. Sauti ◽  
N.A. Wahab ◽  
M.A. Omar ◽  
I.N. Ahmad

This paper reports on the compatibility of waste rubber as binder for M2 High Speed Steel injection moulding. The feedstock was prepared at a powder loading of 65 vol.% using 22μm M2 High Speed Steel powder and the binders consisting of 55wt.% paraffin wax, 21wt.% polyethylene, 14wt.% waste rubber and 10wt.% stearic acid. The specimens were then sintered in vacuum and 95%N2/5%H2 atmosphere. The sintering in vacuum atmosphere occurred within a temperature range from1200°C to 1260°C, whilst the 95%N2/5%H2 atmosphere was carried out within a temperature range from 1220°C to 1300°C. The effects of the sintering atmosphere and temperature on the physical properties, mechanical properties and microstructure were investigated.


2018 ◽  
Author(s):  
Istikamah Subuki ◽  
Nurul Jannah Abd Latiff ◽  
Muhammad Hussain Ismail

Sign in / Sign up

Export Citation Format

Share Document