Role of Transient Creep in γ-Single Phase Ni-20Mass%Cr Alloy

2007 ◽  
Vol 539-543 ◽  
pp. 3030-3035
Author(s):  
Takashi Matsuo

Through the analysis of many creep rate-strain curves of γ-single phase Ni-20mass%Cr alloy single crystals with various stress axes, it has been elucidated that the ratio of transient stage to rupture life becomes larger with decreasing the stress. And the transient stage consists of Stage I and Stage II. In Stage I, the creep rate just after loading remains constant, and in Stage II, a steep decrease in creep rate continues. It is noticeable that there is a marked difference in transient stage among single crystals with different stress axes. The aim of this study is to elucidate the mechanisms leading to the different transient stages as the function of stress axes. The deformation during transient stage in the single crystals except for the single crystals with the stress axes of the [001] and [1,–11] poles in the standard stereographic triangle, proceeds using the primary slip plane. And they are divided into two groups of the single crystals with the angle between stress axis and primary slip plane, θ, less than 45° and the single crystals with θ more than 45°. The deformations of Stage I and Stage II in these single crystals proceed using the slip system of (111)<1,–01> and the slip system of (111)<1,–10>, and in Stage I, the former slip system acts mainly except for that of single crystals with stress axis of [011]. While, in the single crystal with stress axis of [011], two slip systems above described operate at the beginning of Stage I, and the stress axis moves along [011]-[1,–11] line. And this moving gives slight increase in the Schmid factor, therefore, in Stage I slight increase in creep rate was confirmed. The {111} pole figure of the single crystal with stress axis of [1,–11] whose deformation proceeds using the plural slip planes are obtained by SEM-EBSD method. It becomes clear that the smallest strains of Stage I and Stage II derived from the increase in the torsion with creep deformation.

2006 ◽  
Vol 15-17 ◽  
pp. 870-875 ◽  
Author(s):  
Masaomi Mitsutake ◽  
Yoshihiro Terada ◽  
Takashi Matsuo

The features of the creep deformation of γ-single phase single crystals with the composition of Ni-20mass%Cr are characterized by the extended transient stage, which consists of Stage I and Stage II. In the Stage I, the creep rate just after loading remains unchanged, while the creep rate decreases continuously in Stage II. In the single crystals except for the single crystals with the stress axis of [001] and [1, – 11], the predominant creep deformation using the primary slip plane continues. By this deformation, the cross section of specimen turns to elliptical in shape. However, in the single crystals with the angle between stress axis and primary slip plane (111) is more than 45°, the deformation using the primary slip plane does not continue, as a result, the duration of Stage II turn to shorter one. The single crystal with the stress axis of [011] has the largest angle of 55°. In this study, the deformation manner during transient stage of single crystal with the stress axis of [011] orientation is investigated from the two viewpoints. The first one is to clarify the change in deformation manner with decreasing the stress. As a result, with decreasing the stress, the Stage I become clear and strain during Stage I and Stage II become small, furthermore, the decreasing ratio of creep rate with definite strain becomes larger. While, the second viewpoint is to investigate the change in crystallographic orientation of the [011] single crystals with creep deformation using the inverse pole figure obtained by the EBSD method. As a result, at the stress of 29.4 MPa, the spot of stress axis turns from the [011]-[1, – 11] line to the <1, – 01> direction. While, at the stress of 19.6 MPa, the stress axis moves for the [1, – 11] pole along the [011]-[1, – 11] line from the [011] pole. And, it is noteworthy that the spot widely spread from the [011] pole during transient stage. This indicates the large distortion in the primary slip plane and the evidence of heterogeneous deformation.


2006 ◽  
Vol 15-17 ◽  
pp. 864-869 ◽  
Author(s):  
Kentaro Yuge ◽  
Yoshihiro Terada ◽  
Takashi Matsuo

The creep deformations of γ-single phase Ni-20mass%Cr single crystals with stress axes within standard stereographic triangle and at the three pole positions have been investigated. The most of the creep life is occupied by the transient stage, which consists of Stage I and Stage II. In Stage I, the creep rate just after loading remains constant. In Stage II, the creep rate decreases continuously. Except for the single crystals with stress axes of [001] and [1,–11] poles, the single crystals make the creep deformation using the primary slip plane of (111). As a result, the cross section of the specimens turns from circular to elliptical in shape. However, there are marked difference in deformation manner among single crystals with the stress axes within standard stereographic triangle. The single crystals whose angle between stress axis and primary slip plane of (111), θ. is more than 45° shows the heterogeneous deformation during creep. While, the homogeneous deformation will be expected in the single crystals with θ less than 45°. In this study, by using the four single crystals with θ less than 45°, the change in the stress axis with the creep deformation at 1173K-29.4MPa, is investigated and the deformation manner due to the primary slip plane of (111) is estimated by conducting the creep interrupting tests. In the two single crystals with stress axes in the standard stereographic triangle where the moving range of θ is narrow, comparing to the others, the spot of the stress axis in the inverse pole figure moves for <1,– 01> direction by using (111)<1,–01> slip system, and after arriving at the [001]-[1,–11] line, the spot turns to its direction for [1,–11] pole using (111)<1,–10> slip system. While, in the other two single crystals whose stress axes located in the area with wider moving range of θ, the spot of stress axis only move for <1,–01> direction. And, the widely spread spot of the stress axis is confirmed after subjecting the small strain.


2006 ◽  
Vol 980 ◽  
Author(s):  
Xiaohua Min ◽  
Eisaku Sakurada ◽  
Masao Takeyama ◽  
Takashi Matsuo

AbstractBased on our analysis of a lot of creep rate-strain curves of PST crystals with the different angles between the lamellar plate and the stress axis, designated as ø, it was confirmed that the creep rate and the creep deformation manner strongly depend on the ø. It was supposed that the predominant creep deformation using γ plate during the transient stage is derived by the fully suppression of the operation of another slip systems not parallel to γ plate through α2 plate. It was also confirmed that the initial stress axes of the PST crystals within the standard stereographic triangle move for the [001]-[111] line, and then turn their directions for [111] pole during the transient stage. This moving manner of the stress axis indicated that the first slip system of [101](111) continues to the area near the [001]-[111] line in the standard stereographic triangle, and then, the second slip system of [110](111) operates. By comparing this moving manner to the creep rate-strain curve, it is suggested that the first slip system of [101](111) operates during the Stage I where the light decrease in the creep rate remains, after that, the second slip system of [110](111) appears and leads to steep decrease in the creep rate. This stage was designated as the Stage II. According to this conception, it is supposed that the strain at the end of the Stage I is directly correlated with the angle from the initial stress axis to the [001]-[111] line in the standard stereographic triangle. In this study, this supposition was confirmed by conducting the creep tests at 1148 K/68.6 MPa using two PST crystals with ø of 31° and 34°. The initial stress axis of the PST crystal with ø of 31° locates nearer to the [001]-[-111] line than that of the PST crystal with ø of 34°. The strain at the end of the Stage I of the PST crystal with ø of 31° is half that of the PST crystal with ø of 34°. By analyzing the inverse pole figures of the creep interrupted PST crystals, it was confirmed that the angle from the initial stress axis to the [001]-[111] line is correlated with the strain of the transient stage.


2010 ◽  
Vol 638-642 ◽  
pp. 2297-2302
Author(s):  
Takashi Matsuo

Through the analysis of many creep rate-time or creep rate-strain curves of -single phase Ni-20mass% Cr alloy single crystals with various stress axes, it was clarified that the creep deformation manners at lower stresses are drastically different to those at higher stresses. These creep features at lower stresses are summarized into three ones as follows. (i) The fully extended transient stage occupies the considerable ratio of rupture life. (ii) The steady state stage disappears, because the transient stage directly connected with the accelerating stage. (iii) The origin of the onset of accelerating stage is regarded as the formation of the dynamic recrystallized grain. These difference in creep deformation manner were caused by the predominant operation of the primary slip system and then the homogeneous evolution of dislocation substructures.


Author(s):  
G. A. Stone ◽  
G. Thomas

A single crystal stressed in the [3]𝛄 direction at 185°K was transformed to 5% 𝛂 martensite and 2% Ɛ martensite by volume. The austenite slip system of maximum shear stress is the (11)𝛄 [01)𝛄. Fig. 1 shows a two surface study using the electron and optical microscopes. The a martensite is confined between £martensite plates with the (0001)Ɛ ∥ (11)𝛄. The size of the acicular martensite crystals is controlled by the spacing of the £ martensite plates. These £ martensite plates are seen in Fig. 1A as dark vertical bands. The axes of the acicular crystals lie in the (11)𝛄 plane. The £ martensite habit plane is defined as the plane perpendicular to the (11)𝛄 containing the vector defining the crystal axis.


2021 ◽  
Vol 1016 ◽  
pp. 1443-1447
Author(s):  
Tubasa Suzuki ◽  
Masaki Tanaka ◽  
Tatsuya Morikawa ◽  
Yelm Okuyama ◽  
Jun Fujise ◽  
...  

Czochralski silicon single crystals were deformed in tensile tests along the direction at between 1173 K and 1373. Yield point phenomenon were observed in the specimens deformed at below 1273 K while continues yield was observed in the specimens deformed at above 1323 K. It is due to the effect of dislocation starvation in the used crystals. Work-hardening rates in stage II were consistent with those reported in fcc crystals such as copper. The onset of stage II was found to be active before the Schmid factor of the second slip system becomes larger than that of the primary slip system. Electron backscattered diffraction images indicated clear kink bands near grips and in the parallel portion. The kink bands were formed at the middle of stage I, which suggest that the formation of kink bands is a trigger of stage II.


1996 ◽  
Vol 460 ◽  
Author(s):  
Y. Minonishi ◽  
M. Legros ◽  
D. Caillard

ABSTRACTIn situ TEM straining experiments have been performed on a Ti3Al single crystal, along the c-axis, in order to study the slip of 2c+a dislocations in pyramidal planes. The results show that slip takes place in π1 planes, in contrast with what has been observed after compression tests (slip in π2 planes), and that rows of loops are nucleated in the slip plane. The mechanisms which may control slip in the π1 planes are briefly discussed.


1994 ◽  
Vol 357 ◽  
Author(s):  
X. J. Ning ◽  
P. Pirouz

AbstractWhen a 6H-SiC single crystal is deformed under indentation or uniaxial compression in orientations not favorable for the activation of the 1/3[1120](0001) easy glide system, the secondary slip system is activated. Additionally, for low- temperature deformations, “kinks” and/or micro-cracks form in the crystal. In this paper, experimental results on relatively lowtemperature compression and indentation tests of single crystal 6H-SiC, and the microstructure of the deformed crystals, are presented. Based on the results, the secondary slip system in 6HSiC has been determined to be 1/3[1120](1100), which may actually be a combination of alternate glide of 1/3[1120] dislocations on the (1102) and (1102) planes. Further, dislocation mechanisms for the nucleation of prism-plane and basal-plane cracks, and for the process of kinking, in deformed 6H-SiC are proposed.


1986 ◽  
Vol 81 ◽  
Author(s):  
Katsuya Watanabe ◽  
Masaaki Fukuchi

AbstractThe rolling anisotropy of Ni3Al single crystals was studied. A single crystal sheet in the (011) plane showed remarkable anisotropy. Rolling the sheet in the [100] direction was simple but was almost impossible in the [011] direction. Substantial anisotropy was not observed in the (111) and (001) sheets. The texture of the rolled (011) and (111) sheets were {011}<011>. It is concluded that the rolling anisotropy of single crystal sheets is determined by the presence of active slip system related to compressive strain normal to the sheet plane, and tensile strain parallel to the rolling direction.


Sign in / Sign up

Export Citation Format

Share Document