Effect of Pulsed High Energy Electron Beam on Surface Modification of AZ91 Magnesium Alloy

2007 ◽  
Vol 546-549 ◽  
pp. 547-550
Author(s):  
Wei Lv ◽  
Hui Zhao ◽  
Zhong Han ◽  
Zhen Liu

Effect of pulsed high-energy electron beam on the surface modification and the state of surface layer and wear resistance of AZ91 magnesium alloy have been investigated in this study. Optical microscope (OM) and X-ray diffraction (XRD) were employed to characterize the microstructure and phase composition of the modified surface layer. It was found that the thickness of melted layer on the surface varied with electron beam current and the numbers of pulses, the treated surface layer exhibited higher hardness than AZ91 alloy. The friction coefficient and the wear volume of AZ91 alloy after electron beam treatment decrease markedly. The wear resistance of treated samples were significantly improved, which may be attributed to high hardness as a result of grain refinement.

2016 ◽  
Vol 16 (1) ◽  
pp. 13-18
Author(s):  
J. Iwaszko ◽  
M. Strzelecka

Abstract In this study, modification of the AZ91 magnesium alloy surface layer with a CO2 continuous wave operation laser has been taken on. The extent and character of structural changes generated in the surface layer of the material was being assessed on the basis of both macro- and microscopy investigations, and the EDX analysis. Considerable changes in the structure of the AZ91 alloy surface layer and the morphology of phases have been found. The remelting processing was accompanied by a strong refinement of the structure and a more uniform distribution of individual phases. The conducted investigations showed that the remelting zone dimensions are a result of the process parameters, and that they can be controlled by an appropriate combination of basic remelting parameters, i.e. the laser power, the distance from the sample surface, and the scanning rate. The investigations and the obtained results revealed the possibility of an effective modification of the AZ91 magnesium alloy surface layer in the process of remelting carried out with a CO2 laser beam.


2005 ◽  
Vol 488-489 ◽  
pp. 701-704
Author(s):  
Hui Zhao ◽  
Zhong Han ◽  
Zhen Liu

This study is concerned with the effect of high energy ion beam irradiation on surface properties of AZ91 magnesium alloy. The study included a characterization of ion beam surface modification zone in terms of microstructure, and mechanical properties like nanohardness, wear, and corrosion resistance of the surface layer were studied in details. Nanohardness of the modification layer was improved about 2 times as that of the as-received AZ91. The corrosion resistance of the modified layer was significantly improved in NaCl solution because of refined grains. The wear resistance of the modification layer was also improved as compared to as-received AZ91.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4010
Author(s):  
Grzegorz Banaszek ◽  
Teresa Bajor ◽  
Anna Kawałek ◽  
Tomasz Garstka

This paper presents the results of numerical tests of the process of forging magnesium alloy ingots (AZ91) on a hydraulic press with the use of flat and proprietary shaped anvils. The analysis of the hydrostatic pressure distribution and the deformation intensity was carried out. It is one of the elements used for determining the assumptions for the technology of forging to obtain a semi-finished product from the AZ91 alloy with good strength properties. The aim of the research was to reduce the number of forging passes, which will shorten the operation time and reduce the product manufacturing costs. Numerical tests of the AZ91 magnesium alloy were carried out using commercial Forge®NxT software.


Author(s):  
Mohd Imran Ansari ◽  
Dineshsingh G Thakur

Incorporation of fine nanoparticles and cationic surfactant (Aliquat 336) within an ENi–P matrix has given a new dimension to the field of nanocomposite coatings. It describes the surface engineering processes currently used for the protection of AZ91 magnesium alloy surface against wear, including electroless nano-composite coatings. The present work aims to investigate the influence of Aliquat 336 cationic surfactant on the microhardness and tribological properties of electroless (Ni–P–ZnO) ternary alloy nanocomposite coatings on AZ91 magnesium alloy substrate from acidic bath. The results revealed that there was a significant improvement in the microhardness and wear resistance of the coated surface by the addition of cationic surfactant at a concentration of 1.5 g/L as compared to the coating obtained without the addition of cationic surfactant in the chemical bath. These results are thus clearly indicative of the fact that the component of life of members made from substrate subjected to nanocomposite coatings with varying the concentration of surfactant can be greatly improved, thereby preventing early or regular failures, and increasing service life.


Sign in / Sign up

Export Citation Format

Share Document