Role of Heavy Deformation in Thermomechanical Processing on the Formation of Ultrafine-Grained Structure in Steels

2007 ◽  
Vol 558-559 ◽  
pp. 23-31 ◽  
Author(s):  
Tadashi Maki

The formation of ultrafine-grained structure in steels by various thermomechanical processings is reviewed from a metallurgical point of view. In the recent new type TMCP, ultrafine ferrite grains with a grain size of about 1μm are obtained when the austenite is heavily deformed at lower temperatures. In this case, dynamic phenomena such as dynamic recrystallization become prominent in the process. In the aging after heavy cold rolling of supersaturated matrix phase in two-phase alloys, the competition between the recovery or recrystallization of matrix phase and the precipitation of second phase occurs, resulting in various types of two-phase structures including microduplex structure. Microduplex structure is also obtained by annealing after heavy cold rolling of coarse two-phase structure in duplex stainless steel and high carbon steel. Recently, various severe plastic deformation processings, in which very large plastic strain over 4 is applied to the materials, have been developed to produce ultrafine grained materials with nanocrystalline and/or submicrocrystalline structures.

2003 ◽  
Vol 35 (3-4) ◽  
pp. 273-282 ◽  
Author(s):  
L. Q. Chen ◽  
N. Kanetake

In this article, the powder metallurgy technique combined with flat hot-extrusion and cold rolling processes was employed to fabricate 10 and 20vol.%Nb/Al metal–metal composite sheets. The hot-extruded and coldrolled textures of the matrix aluminum in these metal–metal composite sheets were investigated by three dimensional orientation distribution functions (ODFs) analysis. The results show that the extrusion mode and large second phase particulate metal, Nb, have strong influence on the development of the extrusion and cold rolling textures in composites’ matrix. The matrix Al forms β-fiber textures after flat hot extrusion, where the components consist of B′-{011} ‹322›, S′-{124} ‹654› and C′-{113}h332i. After cold rolling process, only B′-{011} ‹322› changed to B-{011} ‹211› while the other components remained the same. The large particles in composites affect the matrix deformation in such a way that separates the distorted or bound zones from the deformation zones, which resulted in the final cold rolling deformation textures.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ankur Kumar ◽  
F. Khan MD ◽  
Sushanta Kumar Panigrahi ◽  
Gajanan P. Chaudhari

Abstract Effect of microstructural changes after friction stir processing (FSP) on the corrosion behaviour of rare earth containing QE22 magnesium alloy is studied. FSP produced ultrafine-grained α-Mg matrix and refined the Mg12Nd precipitates whereas Mg12Nd2Ag precipitates got dissolved in the matrix. Although its hardness increased from 76 to 90 VHN, the FSPed alloy displayed inferior corrosion resistance in 3.5 wt% NaCl solution. This is attributed mainly to the iron contamination from FSP and presence of refined second phase particles which work as active cathodic sites. The role of distributed Mg12Nd precipitates before and after FSP is analysed from micro galvanic corrosion point of view.


1989 ◽  
Vol 168 ◽  
Author(s):  
M. Lawrence ◽  
A. Dass ◽  
Siva Sivaram ◽  
Bryan Tracy

AbstractThin films of tungsten grown in a CVD reactor by the reduction of hydrogen and silane consisted of a two phase microstructures; a matrix phase of bcc tungsten, and a second phase of W20O58. The second phase is uniformly distributed in the film and does not afeoct 5athe electrical resistivity of hydrogenreduced films (8 μohm-cm). However, dissolved oxygen in the silane-reduced film contributes to the observed higher electrical resistivity (13 μohm-cm) along with smaller grain size. The larger amount of oxide in the hydrogen-reduced film correlates with its slower growth rate when compared to the silane-reduced film which contained a smaller amount of oxide phase.


Sign in / Sign up

Export Citation Format

Share Document