Formation of Metallic Micro/Nanomaterials by Utilizing Migration Phenomena and Techniques for their Applications

2009 ◽  
Vol 614 ◽  
pp. 3-9 ◽  
Author(s):  
Masumi Saka ◽  
Hironori Tohmyoh ◽  
M. Muraoka ◽  
Yang Ju ◽  
K. Sasagawa

Migration of atoms is presented to be utilized for fabrication of metallic micro/nanomaterials by controlling the phenomenon. Two kinds of migration phenomena are treated; one is electromigration and the other is stress migration. In addition to the formation of micro/nanomaterials, some achievements in enhancing their functions are demonstrated. One is a technique to fabricate nanocoils from the formed Cu nanowires. The others are techniques to weld or cut the micro/nanowires by using Joule heating. Finally, regarding evaluation of mechanical and electrical properties of the micro/nanomaterials, the concentrated-mass cantilever technique in atomic force acoustic microscopy and the four-point atomic force microscope technique are shown to be powerful tools, respectively.

Biosensors ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 51 ◽  
Author(s):  
Meghan Robinson ◽  
Karolina Valente ◽  
Stephanie Willerth

We have designed and validated a set of robust and non-toxic protocols for directly evaluating the properties of engineered neural tissue. These protocols characterize the mechanical properties of engineered neural tissues and measure their electrophysical activity. The protocols obtain elastic moduli of very soft fibrin hydrogel scaffolds and voltage readings from motor neuron cultures. Neurons require soft substrates to differentiate and mature, however measuring the elastic moduli of soft substrates remains difficult to accurately measure using standard protocols such as atomic force microscopy or shear rheology. Here we validate a direct method for acquiring elastic modulus of fibrin using a modified Hertz model for thin films. In this method, spherical indenters are positioned on top of the fibrin samples, generating an indentation depth that is then correlated with elastic modulus. Neurons function by transmitting electrical signals to one another and being able to assess the development of electrical signaling serves is an important verification step when engineering neural tissues. We then validated a protocol wherein the electrical activity of motor neural cultures is measured directly by a voltage sensitive dye and a microplate reader without causing damage to the cells. These protocols provide a non-destructive method for characterizing the mechanical and electrical properties of living spinal cord tissues using novel biosensing methods.


2013 ◽  
Vol 284-287 ◽  
pp. 315-319
Author(s):  
Jui Chuang Wu ◽  
Dan Kai Yang ◽  
Yane Shu Lin ◽  
Jun Yi Chen

Two sequence-inversed probes were microarrayed on glass slides to study the hybridization efficiency with their DNA targets. A fluorescence laser scanner and an atomic force microscope (AFM) were utilized to investigate the efficiency in different hybridization cases and their corresponding depth changes on the chips. The sequences of two targets were designed to be fully complementary to their shared DNA probe in a coaxial stacking configuration. In other words, after the first DNA target is hybridized (pre-hybridizing) onto the probe, the second one is stacked onto the non-hybridized region of the same probe. The pre-hybridizing and the second DNA targets were distinguished by two distinct fluorescent dyes. The enhancement of the hybridization efficiency was investigated through the comparison between the stacking and individual hybridization configurations. AFM was used to measure the depths of two probes at different steps of hybridization. The results indicated that the depths increased as the hybridization proceeded. Probe#1, pre-hybridizing close to the chip surface, obtained a thicker depth than the other probe pre-hybridizing away from the chip surface, Probe#2. A hypothesis was proposed to explain how the depth variation was associated with the observed hybridization efficiency.


Author(s):  
Naokazu Murata ◽  
Naoki Saito ◽  
Kinji Tamakawa ◽  
Ken Suzuki ◽  
Hideo Miura

Both mechanical and electrical properties of electroplated copper thin films were investigated experimentally with respect to changes in their micro texture. Clear recrystallization was observed after the annealing even at low temperature of about 150°C. The fracture strain of the film annealed at 400°C increased from the initial value of about 3% to 15%, and at the same time, the yield stress of the annealed film decreased from about 270 MPa to 90 MPa. In addition, it was found that there were two fatigue fracture modes in the film annealed at the temperatures lower than 200°C. One was a typical ductile fracture mode with plastic deformation and the other was brittle one. When the brittle fracture occurred, the crack propagated along weak or porous grain boundaries which remained in the film after electroplating. The brittle fracture mode disappeared after the annealing at 400°C. These results clearly indicated that the mechanical properties of electroplated copper thin films vary drastically depending on their micro texture. Next, the electrical reliability of electroplated copper thin film interconnections was discussed. The interconnections used for electromigration (EM) tests were made by damascene process. The width of the interconnections was varied from 1 μm to 10 μm. An abrupt fracture mode due to local fusion appeared in the as-electroplated films within a few hours during the test. Since the fracture rate increased linearly with the increase of square of the applied current density, this fracture mode was dominated by local Joule heating. It seemed that the local resistance of the film increased due to the porous grain boundaries and thus, the local temperature around the porous grain boundaries increased drastically. On the other hand, the life of the interconnections annealed at 400°C was improved significantly. This was because of the increase of the average grain size and the improvement of the quality of grain boundaries in the annealed films. The electrical properties of the electroplated copper films were also dominated by their micro texture. However, the stress migration occurred in the interconnections after the annealing at 400°C. This was because of the high residual tensile stress caused by the constraint of the densification of the films by the surrounding oxide film in the interconnection structures during the annealing. Finally, electroplating condition was controlled to improve the electrical properties. Both the resistance of electromigration and electrical resistivity were improved significantly. However, electromigration of copper atoms still occurred at the interface between the electroplated copper and the thin tantalum (Ta) layer sputtered as base material. Therefore, it is very important to control the crystallographic quality of electroplated copper films and the interface between different materials for improving the reliability of thin film interconnections.


1998 ◽  
Vol 507 ◽  
Author(s):  
H. Furukawa ◽  
S. Nitta ◽  
M. Hioki ◽  
T. Iwasaki ◽  
T. Itoh ◽  
...  

ABSTRACTThe shape of several waveguide end of samples for photoluminescence absorption spectroscopy (PLAS) was studied by atomic force microscope (AFM), because there was an experimental problem where some samples for PLAS did not work. Using the result of AFM, the waveguide end was reshaped by plasma dry etching. The shortening of the etching time was an effective method to improve the structure of the waveguide end. Secondly, the PLAS method was extended to the other materials from a-Si:H. The PLAS signal of amorphous carbon nitride a-CNx was detected for the first time. Amorphous carbon nitride a-CNx film itself and the interface between a-CNx and a-Si02 are found as good as a-Si:H and the interface between a-Si:H and a-Si 3N4+x:H, respectively.


2013 ◽  
Vol 677 ◽  
pp. 69-73
Author(s):  
Zeng Lei Liu ◽  
Nian Dong Jiao ◽  
Zhi Dong Wang ◽  
Zai Li Dong ◽  
Lian Qing Liu

This paper introduces atomic force microscope (AFM) deposition method to fabricate nanostructures and nanodevices. Field emission theory is introduced in this paper, which provides theoretical explanation for AFM deposition. Dot matrixes are fabricated by AFM deposition on three different substrates, Si, Au and GaAs. Differences of deposition on the three substrates are discussed. AFM deposition has many practical applications. For example, AFM deposition can be used to solder nano components together to improve electrical properties of nanodevices. Besides nanosoldering, AFM deposition can also be used in fabrication of nanodevices. Thus AFM deposition is a valuable research field for future massive applications of nanodevices.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5862
Author(s):  
Ingo Ortlepp ◽  
Jaqueline Stauffenberg ◽  
Eberhard Manske

This paper deals with a planar nanopositioning and -measuring machine, the so-called nanofabrication machine (NFM-100), in combination with a mounted atomic force microscope (AFM). This planar machine has a circular moving range of 100 mm. Due to the possibility of detecting structures in the nanometre range with an atomic force microscope and the large range of motion of the NFM-100, structures can be analysed with high resolution and precision over large areas by combining the two systems, which was not possible before. On the basis of a grating sample, line scans over lengths in the millimetre range are demonstrated on the one hand; on the other hand, the accuracy as well as various evaluation methods are discussed and analysed.


Sign in / Sign up

Export Citation Format

Share Document