Mechanical Behaviour of High Density Polyethylene Based Foams

2009 ◽  
Vol 620-622 ◽  
pp. 781-784
Author(s):  
Juan Lobos ◽  
Miguel A. Rodríguez-Pérez ◽  
Miguel del Carpio ◽  
Jose A. de Saja

This paper presents the mechanical properties of a collection of high density Polyethylene based foams. The produced materials are characterised by a reduction in density up to 60%, an excellent surface quality, cell sizes in the microcellular range (around 50 microns) and a multi-structured cellular structure (cranial structure) with dense skin and foamed core. The mechanical properties of these materials showed linear relationships between Young’s modulus and density for densities above 0.7 g/cm3. In addition, variations in the cell size did not influence the elastic properties.

Polymers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1361 ◽  
Author(s):  
David Manas ◽  
Miroslav Manas ◽  
Ales Mizera ◽  
Pavel Stoklasek ◽  
Jan Navratil ◽  
...  

This article discusses the possibilities of using radiation cross-linked high density polyethylene (HDPEx) acting as a filler in the original high density polyethylene (HDPE) matrix. The newly created composite is one of the possible answers to questions relating to the processing of radiation cross-linked thermoplastics. Radiation cross-linked networking is—nowadays, a commonly used technology that can significantly modify the properties of many types of thermoplastics. This paper describes the influence of the concentration of filler, in the form of grit or powder obtained by the grinding/milling of products/industrial waste from radiation cross-linked high density polyethylene (rHDPEx) on the mechanical and processing properties and the composite structure. It was determined that, by varying the concentration of the filler, it is possible to influence the mechanical behaviour of the composite. The mechanical properties of the new composite—measured at room temperature, are generally comparable or better than the same properties of the original thermoplastic. This creates very good assumptions for the effective and economically acceptable, processing of high density polyethylene (rHDPEx) waste. Its processability however, is limited; it can be processed by injection moulding up to 60 wt %.


2008 ◽  
Vol 27 (6) ◽  
pp. 347-362 ◽  
Author(s):  
M.A. Rodriguez-Perez ◽  
J. Lobos ◽  
C.A. Perez-Muñoz ◽  
J.A. de Saja ◽  
L. Gonzalez ◽  
...  

This paper presents the production method and the compressive mechanical response at low strains for a collection of polyethylene foams with high densities and cell sizes in the microcellular range. The materials were produced using an improved compression moulding technique that allows and independent control of density and cell size. The materials had a relative density between 0.27 and 0.92, an homogeneous and multi-structured cellular structure with dense skin and foamed core and cell sizes in the range 30 to 100 microns. The Young's modulus decreased with density. For relative densities higher than 0.7, the reduced Young's modulus of the foams was higher than that of the solid. In addition, it has been proved that variations in the cell size at constant density did not influence the Young's modulus. The advantages of using these materials for the production of plastic pipes have been analysed. In comparison with a solid pipe a reduction of the weight of foamed pipes loaded in compression of up to 40% can be reached.


2015 ◽  
Vol 19 ◽  
pp. 155-162 ◽  
Author(s):  
Amin Abedini ◽  
Payam Rahimlou ◽  
Taghi Asiabi ◽  
Samrand Rash Ahmadi ◽  
Taher Azdast

Sign in / Sign up

Export Citation Format

Share Document