Study on Cutter Radius Compensation Methods for 5-Axis CNC Machining

2009 ◽  
Vol 628-629 ◽  
pp. 347-352 ◽  
Author(s):  
Yuan Liu ◽  
Yong Zhang Wang ◽  
Hong Ya Fu ◽  
Zhen Yu Han

The numerical control (NC) program files need re-generating if there is any tool dimension change or tool wear for multi-axis machining. If the tool is replaced to adapt this change there will be increased cost. To solute this problem, 3D cutter radius compensation method for 5-axis computer numerical control (CNC) machining is deeply researched. Taking five axes linkage machine tools of X, Y, Z, B, C form with rotary tables B and C as an example, coordinate transformation matrix (CTM) and the cutter compensation vector for 3D cutter radius compensation are derived. The discrimination methods for path joint pattern (PJP) are given. A controller with 3D cutter radius compensation function for 5-axis linkage CNC machine tools is developed based on this method. The controller is allocated to a 5-axis milling machine tool and experiments are done. The proposed algorithm is demonstrated using a practical example.

2020 ◽  
Vol 17 (2) ◽  
pp. 172988141989801
Author(s):  
Yuan Guo ◽  
Yu Sun ◽  
Kai Wu

Intelligent manufacturing as the development direction of the new generation manufacturing system has become a hot research topic. Computer numerical control (CNC) machine tools are the core manufacturing equipment in discrete manufacturing enterprises, collecting and monitoring the data is an important part of intelligent manufacturing workshops. It has a great significance to improve the production efficiency of enterprises and eliminate information islands. The purpose of this article is to solve the problems of data acquisition and monitoring of CNC machine tools in the manufacturing workshop of enterprises. This article uses FOCAS data acquisition method to research and develop the data acquisition and monitoring system of CNC machine tools in intelligent manufacturing workshop. The research results show that the equipment information model based on MTConnect protocol and FOCAS can solve the data acquisition and storage functions of CNC machine tools well. Using the object-oriented Petri net model, it can solve various uncertain factors in numerical control (NC) machining tasks and realize the monitoring function of CNC machining tasks in the workshop. Based on the NC program analysis, the calculation method of machining time in the NC program can determine the preventive maintenance cycle of the machine based on the machine fault information. Based on VS2013 development environment, Qt application framework and SQL Server 2012 database, the numerical control machine tool data acquisition and monitoring prototype system was developed, and the system was verified in the workshop to prove the effectiveness of the system.


2012 ◽  
Vol 163 ◽  
pp. 233-237
Author(s):  
Yan Zhong Wang ◽  
Liang Wei Hou ◽  
Yan Qiang Liu ◽  
Rong Shen ◽  
Can Hui Wu ◽  
...  

This paper describes the machining method of complex surface face gear used CNC machine tools and hob cutter, Based on surface characteristics and gear hob principle. A coordinate transformation process is explained in detail in the five axes CNC machining of complex parts. A CNC hob method is proposed about surface orthogonal gear. An experiment is done for validating the method.


Author(s):  
Qin Hu ◽  
Youping Chen ◽  
Xiaoliang Jin ◽  
Jixiang Yang

Linear tool path segments of computer numerical control (CNC) machine tools need to be smoothed and interpolated in order to guarantee continuous and steady machining. However, because of the highly nonlinear relation between arc lengths and spline parameters, it is difficult to develop algorithms to simultaneously achieve real-time corner smoothing and interpolation with high-order continuity, although it is important to guarantee both high calculation efficiency and good dynamic performance of high-speed CNC machining. This paper develops a computationally efficient real-time corner smoothing and interpolation algorithm with C3 continuous feature. The corners at the junction of linear segments are smoothed by inserting Pythagorean-hodograph (PH) splines under the constraints of user-defined tolerance limits. Analytical solutions of the arc length and curvature of the smoothed tool path are obtained by evaluating a polynomial function of the spline parameter. The smoothed tool path is interpolated in real time with continuous and peak-constrained jerk. Simulations and experimental results show that the proposed tool path smoothing and interpolation algorithm can be executed in real time with 0.5 ms control period. Acceleration and jerk continuity of each axis are achieved along the tool path. Comparisons with existing corner smoothing algorithms show that the proposed method has lower jerk than existing C2 algorithms and the real-time interpolation algorithms based on the Taylor series expansion.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2913
Author(s):  
Rafał Gołębski ◽  
Piotr Boral

Classic methods of machining cylindrical gears, such as hobbing or circumferential chiseling, require the use of expensive special machine tools and dedicated tools, which makes production unprofitable, especially in small and medium series. Today, special attention is paid to the technology of making gears using universal CNC (computer numerical control) machine tools with standard cheap tools. On the basis of the presented mathematical model, a software was developed to generate a code that controls a machine tool for machining cylindrical gears with straight and modified tooth line using the multipass method. Made of steel 16MnCr5, gear wheels with a straight tooth line and with a longitudinally modified convex-convex tooth line were machined on a five-axis CNC milling machine DMG MORI CMX50U, using solid carbide milling cutters (cylindrical and ball end) for processing. The manufactured gears were inspected on a ZEISS coordinate measuring machine, using the software Gear Pro Involute. The conformity of the outline, the tooth line, and the gear pitch were assessed. The side surfaces of the teeth after machining according to the planned strategy were also assessed; the tests were carried out using the optical microscope Alicona Infinite Focus G5 and the contact profilographometer Taylor Hobson, Talysurf 120. The presented method is able to provide a very good quality of machined gears in relation to competing methods. The great advantage of this method is the use of a tool that is not geometrically related to the shape of the machined gear profile, which allows the production of cylindrical gears with a tooth and profile line other than the standard.


Author(s):  
Qin Hu ◽  
Youping Chen ◽  
Jixiang Yang ◽  
Dailin Zhang

Linear motion commands of multi-axis computer numerical control (CNC) machine tools need to be smoothed at the transition corners, because the velocity discontinuities at corners can result in fluctuations on machine tool motions and lead to poor surface quality. However, no research has been reported on local corner smoothing algorithm for four-axis CNC machine tools with two rotary axes by considering their special kinematic characteristics. To this end, this paper proposes an analytical C3 continuous local corner smoothing algorithm for four-axis CNC machines with two rotary axes. After coordinates transformation, the tool tip positions and tool orientations are smoothed by locally inserting specially designed three-dimensional (3D) quintic B-splines and one-dimensional (1D) quintic B-splines into the corners between linear motion segments, respectively. The smoothing algorithm guarantees C3 continuity of the tool tip position and C3 continuous synchronization of the tool orientation related to the tool tip position, through analytically evaluating control points of the inserted microsplines. The maximum error tolerances of the tool tip position and tool orientation are mathematically constrained. Experiments on an in-house developed four-axis machine verify the efficacy of the proposed algorithm, where maximal errors caused by the local corner smoothing algorithm are constrained, the synchronization of the tool orientation and the tool tip position are achieved, and the proposed C3 continuous corner smoothing algorithm has lower jerk and jounce but higher tracking and contour accuracy than C2 continuous algorithm.


2015 ◽  
Vol 809-810 ◽  
pp. 1504-1509 ◽  
Author(s):  
Ana Lacramioara Ungureanu ◽  
Gheorghe Stan ◽  
Paul Alin Butunoi

In this paper are proposed two new approaches to maintenance strategies for Computer Numerical Control (CNC) machine tools. The analysis is done for different families of CNC machine tools from S.C. Elmet Bacau, a company specialized in aviation. In maintenance actions applied to CNC machine tools is very important to know the evolution of defects and critical state of electrical and mechanical components. The results of this analysis concludes that maintenance actions can be judged by the developing time period diagram, between failure appearance and interruptions in operation. It is also analyzed the financial impact, revealed from known maintenance strategies adopted on CNC machine tools, resulting in a positive approach of condition based maintenance.


Author(s):  
Xun Xu

The introduction of CNC machines has radically changed the manufacturing industry. Curves are as easy to cut as straight lines, complex 3-D structures are relatively easy to produce, and the number of machining steps that required human action has dramatically reduced. With the increased automation of manufacturing processes with CNC machining, considerable improvements in consistency and quality can be achieved. CNC automation reduced the frequency of errors and provided CNC operators with time to perform additional tasks. CNC automation also allows for more flexibility in the way parts are held in the manufacturing process and the time required to change the machine to produce different components. In a production environment, a series of CNC machines may be combined into one station, commonly called a “cell”, to progressively machine a part requiring several operations. CNC controller is the “brain” of a CNC machine, whereas the physical configuration of the machine tool is the “skeleton”. A thorough understanding of the physical configuration of a machine tool is always a priority for a CNC programmer as well as the CNC machine tool manufacturers. This chapter starts with a historical perspective of CNC machine tools. Two typical types of CNC machine tools (i.e. vertical and horizontal machining centres) are first discussed. Tooling systems for a CNC machine tool are integral part of a CNC system and are therefore elaborated. Also discussed are the four principal elements of a CNC machine tool. They are machine base, machine spindle, spindle drive, and slide drive. What letter should be assigned to a linear or rotary axis and what if a machine tool has two sets of linear axes? These questions are answered later in the chapter. In order for readers to better comprehend the axis and motion designations, a number of machine tool schematics are given.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2458
Author(s):  
Zizhou Sun ◽  
Yifan Dai ◽  
Hao Hu ◽  
Guipeng Tie ◽  
Chaoliang Guan ◽  
...  

The application of ultra-precision shaft parts is widely used, such as the spindle core of the air bearing spindle in ultra-precision machine tools. The precision of the spindle core is extremely high, and it is very difficult to obtain directly by traditional Computer Numerical Control (CNC) machine tools but is mostly obtained by manual grinding, whose machining efficiency is greatly limited. Based on the deterministic figuring theory, this paper focuses on the ultra-precision roundness, optimizing the filtering parameters of the measurement error data and studying the generation mechanism of the removal function morphology; the shape of the removal function is adjusted by combining the analysis of the figuring ability and positioning error. Finally, the optimized removal function is used on an experimental steel shaft, the average roundness convergence ratio is 72% higher than that of the original removal function, and the roundness reaches a 0.1 μm level. The result shows that a reasonable filtering of measured data and the removal function adjusted for the surface feature can improve the efficiency and precision of deterministic figuring on shaft parts.


Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4506 ◽  
Author(s):  
Hyungjung Kim ◽  
Woo-Kyun Jung ◽  
In-Gyu Choi ◽  
Sung-Hoon Ahn

In the new era of manufacturing with the Fourth Industrial Revolution, the smart factory is getting much attention as a solution for the factory of the future. Despite challenges in small and medium-sized enterprises (SMEs), such as short-term strategies and labor-intensive with limited resources, they have to improve productivity and stay competitive by adopting smart factory technologies. This study presents a novel monitoring approach for SMEs, KEM (keep an eye on your machine), and using a low-cost vision, such as a webcam and open-source technologies. Mainly, this idea focuses on collecting and processing operational data using cheaper and easy-to-use components. A prototype was tested with the typical 3-axis computer numerical control (CNC) milling machine. From the evaluation, availability of using a low-cost webcam and open-source technologies for monitoring of machine tools was confirmed. The results revealed that the proposed system is easy to integrate and can be conveniently applied to legacy machine tools on the shop floor without a significant change of equipment and cost barrier, which is less than $500 USD. These benefits could lead to a change of monitoring operations to reduce time in operation, energy consumption, and environmental impact for the sustainable production of SMEs.


Sign in / Sign up

Export Citation Format

Share Document