Microstructure and Texture Optimization in Fe-Si Ferritic Steels

2010 ◽  
Vol 638-642 ◽  
pp. 2829-2834 ◽  
Author(s):  
Patricia Gobernado ◽  
Roumen H. Petrov ◽  
Daniel Ruiz ◽  
Elke Leunis ◽  
Leo Kestens

The ferromagnetic properties of ferritic steels are known to strongly depend on the direction of magnetization. The <100> are the axes of spontaneous magnetic moments and hence the directions of easy magnetization. Materials displaying a <100>//ND texture are ideal not only for transformer but also for rotating machines due to their isotropic magnetic character. In the present study the potential of severe plastic rolling deformation is investigated. The cold rolling and annealing microstructures and textures are identified with increasing rolling strains to a maximum vM equivalent of 8.0. It is shown that excessive rolling reduction is capable of producing non-conventional texture components with promising potential for magnetic applications.

2010 ◽  
Vol 654-656 ◽  
pp. 214-217
Author(s):  
Marwan Almojil ◽  
Pete S. Bate

The development of crystallographic textures of IF and HSLA steels after 20, 50, 70 and 90% cold rolling reductions and subsequent recrystallisation have been investigated using Electron Backscattered Diffraction (EBSD). The HSLA steel was initially processed to give a volume fraction of about 0.2 of fine pearlite colonies, which acted as mechanically hard particles. Both cold rolling and recrystallisation textures are shown to be largely dependent on the rolling reduction for both steels. With increasing rolling reduction, the texture shows gradual intensification of α and γ fibre components. Although PSN was the dominant nucleation site in the HSLA steel during annealing, the α and γ fibres also exist in the recrystallisation textures, but with lower density.


2016 ◽  
Vol 838-839 ◽  
pp. 434-439 ◽  
Author(s):  
Zhanna Yanushkevich ◽  
Andrey Belyakov ◽  
Rustam Kaibyshev ◽  
Christian Haase ◽  
Dmitri A. Molodov

The regularities of static recrystallization in an Fe-0.3C-17Mn-1.5Al TWIP steel subjected to cold rolling and annealing were studied. The cold rolling led to noticeable increase in the dislocation density, extensive mechanical twinning and shear banding. The subsequent annealing resulted in the development of recovered or recrystallized microstructure depending on the rolling reduction and the annealing temperature. An increase in the rolling reduction promoted the recrystallization development, which led to ultrafine-grained microstructure with a grain size below 10 μm. The developed ultrafine-grained steel samples are characterized by beneficial mechanical properties.


Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 17
Author(s):  
Youliang He ◽  
Erik J. Hilinski

In order to investigate the effect of cold rolling deformation mode and initial texture on the final textures of non-oriented electrical steels, a special rolling technique, i.e., skew rolling, was utilized to cold reduce steels. This not only altered initial textures but also changed the rolling deformation mode from plane-strain compression (2D) to a more complicated 3D mode consisting of thickness reduction, strip elongation, strip width spread and bending. This 3D deformation induced significantly different cold-rolling textures from those observed with conventional rolling, especially for steels containing low (0.88 wt%) and medium (1.83 wt%) amounts of silicon at high skew angles (30° and 45°). The difference in cold-rolling texture was attributed to the change of initial texture and the high shear strain resulting from skew rolling. After annealing, significantly different recrystallization textures also formed, which did not show continuous <110>//RD (rolling direction) and <111>//ND (normal direction) fibers as commonly observed in conventionally rolled and annealed steels. At some skew angles (e.g., 15–30°), the desired <001>//ND texture was largely enhanced, while at other angles (e.g., 45°), this fiber was essentially unchanged. The formation mechanisms of the cold rolling and recrystallization textures were qualitatively discussed.


Texture ◽  
1974 ◽  
Vol 1 (3) ◽  
pp. 173-182 ◽  
Author(s):  
G. J. Davies ◽  
D. J. Goodwill ◽  
J. S. Kallend

The variations of the fourth-order coefficients of the crystallite orientation distribution function, with rolling reduction have been determined after cold-rolling and annealing for a deep-drawing quality rimming steel and an aluminium-killed steel. These coefficients influence drawability and earing behaviour and by the manipulation of the coefficients in the distribution function of a 60% cold-rolled and annealed rimming steel, a hypothetical non-earing sheet texture has been derived. By comparison with the actual sheet texture those textural components which most affect earing behaviour are identified.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 187
Author(s):  
Bo Zhang ◽  
Li Meng ◽  
Guang Ma ◽  
Ning Zhang ◽  
Guobao Li ◽  
...  

Twinning behaviors in grains during cold rolling have been systematically studied in preparing ultra-thin grain-oriented silicon steel (UTGO) using a commercial glassless grain-oriented silicon steel as raw material. It is found that the twinning system with the maximum Schmid factor and shear mechanical work would be activated. The area fraction of twins increased with the cold rolling reduction. The orientations of twins mainly appeared to be α-fiber (<110>//RD), most of which were {001}<110> orientation. Analysis via combining deformation orientation simulation and twinning orientation calculation suggested that {001}<110> oriented twinning occurred at 40–50% rolling reduction. The simulation also confirmed more {100} <011> oriented twins would be produced in the cold rolling process and their orientation also showed less deviation from ideal {001}<110> orientation when a raw material with a higher content of exact Goss oriented grains was used.


2005 ◽  
Vol 495-497 ◽  
pp. 603-608 ◽  
Author(s):  
Atsushi Todayama ◽  
Hirosuke Inagaki

On the basis of Taylor-Bishop-Hill’s theory, many previous theoretical investigations have predicted that, at high rolling reductions, most of orientations should rotate along theβfiber from {110}<112> to {123}<634> and finally into the {112}<111> stable end orientations. Although some exceptions exist, experimental observations have shown, on the other hand, that the maximum on the β fiber is located still at about {123}<634> even after 97 % cold rolling. In the present paper, high purity Al containing 50 ppm Cu was cold rolled up to 99.4 % reduction in thickness and examined whether {112}<111> stable end orientation could be achieved experimentally. It was found that, with increasing rolling reduction above 98 %, {110}<112> decreased, while orientations in the range between {123}<634> and {112}<111> increased, suggesting that crystal rotation along the βfiber from {110}<112> toward {123}<634> and {112}<111> in fact took place. At higher rolling reductions, however, further rotation of this peak toward {112}<111> was extremely sluggish, and even at the highest rolling reduction, it could not arrive at {112}<111>. Such discrepancies between theoretical predictions and experimental observations should be ascribed to the development of dislocation substructures, which were formed by concurrent work hardening and dynamic recovery. Since such development of dislocation substructures are not taken into account in Taylor-Bishop-Hill’s theory, it seems that they can not correctly predict the development of rolling textures at very high rolling reductions, i. e. stable end orientations. On annealing specimens rolled above 98 % reduction in thickness, cube textures were very weak, suggesting that cube bands were almost completely rotated into other orientations during cold rolling. {325}<496>, which lay at an intermediate position between {123}<634> and {112}<111> along theβfiber, developed strongly in the recrystallization textures.


Sign in / Sign up

Export Citation Format

Share Document