SiC Heterojunction Bipolar Transistors with AlN/GaN Short-Period Superlattice Widegap Emitter

2010 ◽  
Vol 645-648 ◽  
pp. 1029-1032
Author(s):  
Hiroki Miyake ◽  
Tsunenobu Kimoto ◽  
Jun Suda

In this study, new SiC-based heterojunction bipolar transistors (HBT) are proposed. An n-type AlN/GaN short-period superlattice (quasi-AlGaN) layer is grown on a SiC pn junction as a widegap emitter. By using quasi-AlGaN emitter, we have demonstrated successful control of band offset of AlGaN/SiC. Quasi-AlGaN/SiC HBT with an Al content over 0.5, which has no potential barrier to electron injection from an n-AlGaN emitter to a p-SiC base, exhibited a common-emitter current gain of β ~ 2.7, whereas the HBT with an Al content below 0.5 showed β ~ 0.1.

2001 ◽  
Vol 37 (6) ◽  
pp. 393 ◽  
Author(s):  
J.J. Huang ◽  
D. Caruth ◽  
M. Feng ◽  
D.J.H. Lambert ◽  
B.S. Shelton ◽  
...  

1994 ◽  
Vol 65 (11) ◽  
pp. 1403-1405 ◽  
Author(s):  
S. R. D. Kalingamudali ◽  
A. C. Wismayer ◽  
R. C. Woods ◽  
J. S. Roberts

2004 ◽  
Vol 833 ◽  
Author(s):  
Byoung-Gue Min ◽  
Jong-Min Lee ◽  
Seong-Il Kim ◽  
Chul-Won Ju ◽  
Kyung-Ho Lee

ABSTRACTA significant degradation of current gain of InP/InGaAs/InP double heterojunction bipolar transistors was observed after passivation. The amount of degradation depended on the degree of surface exposure of the p-type InGaAs base layer according to the epi-structure and device structure. The deposition conditions such as deposition temperature, kinds of materials (silicon oxide, silicon nitride and aluminum oxide) and film thickness were not major variables to affect the device performance. The gain reduction was prevented by the BOE treatment before the passivation. A possible explanation of this behavior is that unstable non-stoichiometric surface states produced by excess In, Ga, or As after mesa etching are eliminated by BOE treatment and reduce the surface recombination sites.


Sign in / Sign up

Export Citation Format

Share Document