On the Effective Mechanical Properties of Fluid-Saturated Composites: A Homogenization Approach

2010 ◽  
Vol 654-656 ◽  
pp. 2273-2276
Author(s):  
Lian Hua Ma ◽  
Bernard F. Rolfe ◽  
Qing Sheng Yang ◽  
Chun Hui Yang

Composites containing saturated fluid are widely distributed in nature, such as saturated rocks, colloidal materials and biological cells. In the study to determine effective mechanical properties of fluid-saturated composites, a micromechanical model and a multi-scale homogenization-based model are developed. In the micromechanical model the internal fluid pressure is generated by applying eigenstrains in the domain of the fluid phase and the explicit expressions of effective bulk modulus and shear modulus are obtained. Meanwhile a multi-scale homogenization theory is employed to develop the homogenization-based model on determination of effective properties at the small scale in a unit cell level. Applying the two proposed approaches, the effects of the internal pressure of hydrostatic fluid on effective properties are further investigated.

2005 ◽  
Vol 2 (1) ◽  
pp. 17-29 ◽  
Author(s):  
Z. Fang ◽  
C. Yan ◽  
W. Sun ◽  
A. Shokoufandeh ◽  
W. Regli

Actual prediction of the effective mechanical properties of tissue scaffolds is very important for tissue engineering applications. Currently common homogenization methods are based on three available approaches: standard mechanics modeling, homogenization theory, and finite element methods. Each of these methods has advantages and limitations. This paper presents comparisons and applications of these approaches for the prediction of the effective properties of a tissue scaffold. Derivations and formulations of mechanics, homogenization, and finite element approach as they relate to tissue engineering are described. The process for the development of a computational algorithm, finite element implementation, and numerical solution for calculating the effective mechanical properties of porous tissue scaffolds are also given. A comparison of the results based upon these different approaches is presented. Parametric analyses using the homogenization approach to study the effects of different scaffold materials and pore shapes on the properties of the scaffold are conducted, and the results of the analyses are also presented.


2011 ◽  
Vol 383-390 ◽  
pp. 931-934
Author(s):  
Chun Li ◽  
Lei Chen ◽  
Li Qiao

The purpose of this paper is to evaluate the effective mechanical properties of composite ceramic with randomly distributed multi-phase inclusions. The RVE finite element subcell technique based on numerical homogenization theory is used to separate the multi-phase composite into the layered unit cell models which are generated by a modified random sequential adsorption algorithm (RSA). The numerical results are also compared and verified with experiment data.


2016 ◽  
Vol 2016 ◽  
pp. 1-10
Author(s):  
Vladimir Levin ◽  
Ignatiy Vdovichenko ◽  
Anatoly Vershinin ◽  
Maksim Yakovlev ◽  
Konstantin Zingerman

The paper describes an algorithm for numerical estimation of effective mechanical properties in two-dimensional case, considering finite strains. The algorithm is based on consecutive application of different boundary conditions to representative surface elements (RSEs) in terms of displacements, solution of elastic boundary value problem for each case, and averaging the stress field obtained. Effective properties are estimated as a quadratic dependence of the second Piola-Kirchhoff stress tensor upon the Green strain tensor. The results of numerical estimation of effective mechanical properties of plexiglas, reinforced with steel wire, are presented at finite strains. Numerical calculations were performed with the help of CAE Fidesys using the finite element method. The dependence of the effective properties of reinforced plexiglas upon the concentration of wires and the shape of wire cross section is investigated. In particular, it was found that the aspect ratio of reinforcing wire cross section has the most significant impact on effective moduli characterizing the material properties in the direction of larger side of the cross section. The obtained results allow one to estimate the influence of nonlinear effects upon the mechanical properties of the composite.


Author(s):  
A. Jaziri ◽  
J. Rahmoun ◽  
H. Naceur ◽  
P. Drazetic ◽  
E. Markiewicz

We propose a new elastoplastic damage coupled model for the modelling of trabecular bone behaviour. The damage is carried out thanks to the limit analysis based on the MCK criterion. We first present the methodology allowing the estimation of elastic anisotropic properties of porous media by means of Mori–Tanaka homogenisation scheme. Then, we present the formulation of the integrated yield criterion derived by considering trial velocity field inspired from the Eshelby inhomogeneous inclusion solution. The obtained micromechanical model is implemented via a UMAT routine within the explicit dynamic code LS-DYNA. The proposed micromechanical model has been applied successfully for the modelling of some biomechanics applications to estimate the mechanical properties of the bovine trabecular bone.


2018 ◽  
Vol 189 ◽  
pp. 1-8 ◽  
Author(s):  
Wenlong Tian ◽  
Lehua Qi ◽  
Xujiang Chao ◽  
Luyan Ju ◽  
Shaolin Li ◽  
...  

2010 ◽  
Vol 443 ◽  
pp. 551-556
Author(s):  
Lian Hua Ma ◽  
Bernard F. Rolfe ◽  
Qing Sheng Yang ◽  
Chun Hui Yang

In this paper, an analytical model and its new numerical solution using the homogenization method are developed to determine the effective electromagnetic characteristics of honeycombs. Based on the proposed solution method, the electromagnetic properties are obtained by employing the multi-scale homogenization theory and periodical electric (magnetic) potential boundary conditions. Further, the effect of geometry of honeycomb’s unit cell on effective electromagnetic properties is investigated with the use of the proposed method. The numerical results are compared with analytic results using the Smith-Scarpa’s semi-empirical formula.


Author(s):  
N Hedjazian ◽  
Y Capdeville ◽  
T Bodin

Summary Seismic imaging techniques such as elastic full waveform inversion (FWI) have their spatial resolution limited by the maximum frequency present in the observed waveforms. Scales smaller than a fraction of the minimum wavelength cannot be resolved, and only a smoothed, effective version of the true underlying medium can be recovered. These finite-frequency effects are revealed by the upscaling or homogenization theory of wave propagation. Homogenization aims at computing larger scale effective properties of a medium containing small-scale heterogeneities. We study how this theory can be used in the context of FWI. The seismic imaging problem is broken down in a two-stage multiscale approach. In the first step, called homogenized full waveform inversion (HFWI), observed waveforms are inverted for a smooth, fully anisotropic effective medium, that does not contain scales smaller than the shortest wavelength present in the wavefield. The solution being an effective medium, it is difficult to directly interpret it. It requires a second step, called downscaling or inverse homogenization, where the smooth image is used as data, and the goal is to recover small-scale parameters. All the information contained in the observed waveforms is extracted in the HFWI step. The solution of the downscaling step is highly non-unique as many small-scale models may share the same long wavelength effective properties. We therefore rely on the introduction of external a priori information, and cast the problem in a Bayesian formulation. The ensemble of potential fine-scale models sharing the same long wavelength effective properties is explored with a Markov chain Monte Carlo algorithm. We illustrate the method with a synthetic cavity detection problem: we search for the position, size and shape of void inclusions in a homogeneous elastic medium, where the size of cavities is smaller than the resolving length of the seismic data. We illustrate the advantages of introducing the homogenization theory at both stages. In HFWI, homogenization acts as a natural regularization helping convergence toward meaningful solution models. Working with fully anisotropic effective media prevents the leakage of anisotropy induced by the fine scales into isotropic macro-parameters estimates. In the downscaling step, the forward theory is the homogenization itself. It is computationally cheap, allowing us to consider geological models with more complexity (e.g. including discontinuities) and use stochastic inversion techniques.


2012 ◽  
Vol 232 ◽  
pp. 73-77
Author(s):  
Dong Mei Luo ◽  
Wen Xue Wang ◽  
Qiu Yan Chen ◽  
Hong Yang ◽  
Ying Long Zhou ◽  
...  

Multi-step Mori-Tanaka method (MMT) is applied to the estimation of the effective mechanical properties for composites with three-phase randomly distributed aggregates in this paper. The Multi-phase Homogenization Theory (MHT) which is based on mathematical homogenization method and is employed to verify the results of MMT method. Results show that MMT method is reasonable and practicable to predict the effective mechanical properties of composites with several phases, and the Young’s moduli and Poisson’s ratios of each phase may have some effects on the effective mechanical properties of multi-phase composites.


Sign in / Sign up

Export Citation Format

Share Document